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Abstract

Computational models are utilized in many scientific domains to simulate complex
systems. Sensitivity analysis is an important practice to aid our understanding of the
mechanics of these models and the processes they describe, but performing a suffi-
cient number of model evaluations to obtain accurate sensitivity estimates can often
be prohibitively expensive. In order to reduce the computational burden, a common
solution is to use a surrogate model that approximates the original model reasonably
well but at a fraction of the cost. However, in exchange for the computational benefits
of surrogate-based sensitivity analysis, this approach comes with the price of a loss in
accuracy arising from the difference between the surrogate and the original model. To
address this issue, we adapt the floodgate method of Zhang and Janson (2020) to pro-
vide valid surrogate-based confidence intervals rather than a point estimate, allowing
for the benefit of the computational speed-up of using a surrogate that is especially
pronounced for high-dimensional models, while still retaining rigorous and accurate
bounds on the global sensitivity with respect to the original (non-surrogate) model.
Our confidence interval is asymptotically valid with almost no conditions on the com-
putational model or the surrogate. Additionally, the accuracy (width) of our confidence
interval shrinks as the surrogate’s accuracy increases, so when an accurate surrogate
is used, the confidence interval we report will correspondingly be quite narrow, instill-
ing appropriately high confidence in its estimate. We demonstrate the properties of
our method through numerical simulations on the small Hymod hydrological model,
and also apply it to the more complex CBM-Z meteorological model with a recent
neural-network-based surrogate.

1 Introduction

1.1 Problem Statement

The use of computational models to describe and simulate complex phenomena is ubiquitous
in many scientific fields, and such models play a critical role in both understanding natural
processes and informing high-stakes decisions across many domains. Complex systems are
first represented with a mathematical model—usually implicitly using coupled differential
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equations—and are then implemented in computer code to exactly or approximately solve
these equations. While these models are very useful for simulating processes under various
conditions that may be impossible or infeasibly expensive to observe in reality, the models
themselves can often be incredibly computationally expensive, with a single run taking very
powerful computers on the order of hours or even days to evaluate, prohibiting the generation
of large amounts of data (Razavi et al., 2012a).

Computational models typically rely on a large number of parameters, some of which
may be observed data or known physical constants, while many are unobservable quantities
for which only their distributions or ranges are known. The large number of uncertain inputs
and the complexity of the model results in high variability in the outputs (Do and Razavi,
2020; Xu and Gertner, 2008). Thus, the question of how variation in each input factor affects
the model outputs is of great interest for a number of reasons. It can be informative both to
developers of the model determining how best to improve its structure or reduce uncertainty,
as well as to researchers and decision-makers studying the model as a proxy for reality.

Sensitivity analysis is a set of mathematical methods for analyzing how the inputs of a
system influence its output(s) by quantitatively measuring the attribution of output vari-
ability to uncertainty in the inputs (Pianosi et al., 2015). Sensitivity analysis is a critical
component of understanding the intricacies of a model’s behavior. However, due to the com-
plexity of the models, it is in most cases impossible to derive an analytical description of
input-output relationships, especially since the model itself is almost never given in closed-
form. Thus, most methods for estimating input sensitivities rely on querying the model
many times while varying the input values, often with very specific sampling schemes (see
Section 1.4). However, obtaining a large enough number of samples from the model to reach
a desired level of accuracy is often prohibitively expensive, especially when it needs to be
done repeatedly for a large number of inputs. Much of the research on sensitivity analysis
is therefore aimed at reducing the total number of model evaluations needed to get accurate
estimates.

One popular solution is to use a surrogate model (also referred to as an ‘emulator’ or
‘metamodel’) to approximate the original model at a much lower computational cost. Surro-
gates can be either data-driven machine learning models or lower-fidelity simulation models
that reduce the resolution or number of components of the original. While a computational
model’s surrogate can be orders of magnitude faster to run (Kelp et al., 2018), its outputs
will in general not be exactly the same as those of the original model when both are given the
same inputs. Therefore, simply applying sensitivity analysis to the surrogate model sacrifices
many of the desirable statistical properties, such as consistency and asymptotic normality,
with respect to the sensitivity in the original (non-surrogate) model. This means that even
though we can generate a much larger number of samples from the surrogate for sensitivity
analysis, it is unclear how well the resulting estimates will correspond to the actual sensitivity
value of interest.

1.2 Contribution

We present a novel method for conducting sensitivity analysis that extends Zhang and Janson
(2020)’s floodgate method for inferring variable importance in high-dimensional regression.
Our extension of floodgate (hereafter referred to simply as “floodgate”) leverages surrogate
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models for computational efficiency, yet retains statistical guarantees on its estimation with
respect to the sensitivity in the original model. In particular, floodgate outputs upper- and
lower-bounds for the (original) model sensitivity with provably high asymptotic coverage no
matter how accurate the surrogate is. The widths of these intervals directly improve with the
accuracy of the surrogate, so that floodgate ensures appropriate uncertainty quantification
always, while still providing high precision given a sufficiently high-fidelity surrogate.

Floodgate offers a significant computational advantage compared to non-surrogate-based
techniques, by a factor of up to the dimension of the input space given a sufficiently fast
and accurate surrogate, making it especially advantageous for high-dimensional models. In
addition, given a dataset of sampled inputs and their model evaluations, floodgate can be
applied with no additional evaluations of the original model (i.e., one only needs to evaluate
the surrogate on new inputs), which is not the case for many standard sensitivity analy-
sis techniques since they require very specific pairs of samples. Furthermore, it accounts
for surrogate inaccuracy to rigorously quantify the uncertainty of estimates using intervals
that are much narrower and require fewer assumptions than existing theoretical bounds on
surrogate-based estimation error. Floodgate is applicable to any computational model, any
surrogate model, and nearly any input distribution and sampling scheme.

1.3 Notation

In this paper, we assume that the computational model f ∗ : Rd → R is a deterministic
function—which is true for most computational models—though even randomized models
can be subsumed into our framework by simply including the exogenous randomness (i.e.,
the random seed) in f ∗ as an additional input. Note that we use f ∗ to denote the original
computational model and f to denote the corresponding surrogate, though in the sensitivity
analysis literature the latter is commonly used for computational models.

We will present floodgate as being applied to a single input of interest, denoted X, at a
time and we denote the remaining d− 1 of f ∗’s inputs collectively as Z. Of course this does
not mean floodgate cannot or should not be used for sensitivity analysis of many different
inputs, and indeed the more inputs it is applied to, the larger its computational advantage;
see Sections 2.3, 3, and 4. We use (Xi, Zi) to denote an individual sample from the input
distribution, and we denote the distribution of Xi conditional on Zi as PXi|Zi

. Finally, we
use zα to denote the αth quantile of the standard normal distribution.

1.4 Background and Related Work

Variance-based global sensitivity analysis methods seek to quantitatively attribute output
variance to uncertainty in each input or group of inputs. The estimand that we consider
in this paper is the total-order sensitivity index (Homma and Saltelli, 1996). This quantity
measures the proportion of the total variance of the model output that results from variation
in the input X, through the sum of all direct effects and interactions with other inputs. A
formal definition of this quantity is provided below.

3



Definition 1.1. (Total-order sensitivity index) For a computational model f ∗, the total-
order sensitivity index for input X is defined as

S :=
E [Var (f ∗(X,Z)|Z)]

Var (f ∗(X,Z))
, (1.1)

whenever the appropriate moments exist, with the convention that 0/0 = 0.

Several Monte Carlo (MC) estimators for S have been proposed, including by Jansen
(1999), Homma and Saltelli (1996), and Sobol’ (2007). Most of them utilize the Sobol’
pick-freeze (SPF) scheme (Sobol’, 1993, 2001; Janon et al., 2013). In MC estimation, SPF
estimators use a set of n i.i.d. pairs of points where within each pair, the values of Z are the
same, but X is sampled (conditionally) independently for both points. To formalize this,
assume that for a set of i.i.d. samples {(Xi, Zi)}ni=1 we can sample X̃i ∼ PXi|Zi

such that

X̃i ⊥⊥ Xi | Zi for each i. An example SPF estimator for S introduced by Jansen (1999) is

Ŝ :=

1
2n

n∑
i=1

(
f ∗(Xi, Zi)− f ∗(X̃i, Zi)

)2
1

n−1

n∑
i=1

(
f ∗(Xi, Zi)− 1

n

n∑
i=1

f ∗(Xi, Zi)

)2 . (1.2)

Ŝ is consistent for S and was proven by Sobol’ (2001) and Saltelli et al. (2010) to have
lower variance than other similar SPF estimators, so we only focus on this particular Ŝ as
a comparison to floodgate in Sections 3 and 4. However, for any of these SPF estimators,
computation is very expensive, especially in high dimensions, since computing the full set of
n-sample sensitivity index estimates for all d inputs requires n(d+1) total evaluations of f ∗.
Even if one had access to a dataset of i.i.d. input samples with their corresponding model
evaluations, Ŝ could not be computed without nd additional evaluations of f ∗ to create d
sets of n paired points as described above. Sheikholeslami and Razavi (2020) and Plischke
et al. (2013) have developed sensitivity analysis methods applicable to any given data that
target different estimands, but to our knowledge there are no such methods for estimating
S.

As mentioned in Section 1.1, surrogate modeling techniques are often employed to sidestep
this computational obstacle, though they of course sacrifice some accuracy in the obtained
estimates. Many surrogates are dynamic models that fully simulate the original model by
predicting all of the model’s outputs over arbitrary time scales (e.g., Castelletti et al. (2012);
Kelp et al. (2020)). This includes reduced or simplified versions of the original model (e.g.,
in Arandia et al. (2019)) or even just running the same model at a lower spatio-temporal
resolution. In some cases, a dynamic surrogate is built by using a machine-learning model to
replace only a single particularly expensive subcomponent of the original model rather than
trying to replace the entire model (e.g., in Mills et al. (2019)) or by using a machine-learning
model to map from the outputs of a lower-fidelity simulation to those of the higher-fidelity
model (e.g., in Zhang et al. (2019)). However, since in sensitivity analysis we are typically
only concerned with a particular scalar transformation of the computational model’s outputs,
data-driven response surface surrogates that learn a direct mapping from the inputs to the
output of interest (for some fixed time scale and forcing data, if applicable) can also be
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used (see Razavi et al. (2012b) for a review). For any of these types of surrogates, the näıve
method of estimating S using a surrogate f is to simply replace f ∗ with f in the computation
of some estimator for S. In the case of the SPF estimator Ŝ from (1.2), the surrogate-based
estimator is

Ŝf :=

1
2n

n∑
i=1

(
f(Xi, Zi)− f(X̃i, Zi)

)2
1

n−1

n∑
i=1

(
f(Xi, Zi)− 1

n

n∑
i=1

f(Xi, Zi)

)2 . (1.3)

Another common use of surrogate models for estimating sensitivity indices that is some-
what less similar to our approach is to fit a special type of response surface surrogate from
which estimates of the sensitivity indices can be directly computed from the model coeffi-
cients rather than by MC estimation. These methods rely on the fact that f ∗ can be exactly
represented by an expansion onto some infinite basis, and good approximations of f ∗ can
often be obtained by using only a finite number of terms in the basis for f . The coefficients
of the terms in this reduced basis are then used to compute the truncated-sum estimates Ŝf .
Two of the most popular such methods are the Fourier amplitude sensitivity test (FAST)
(Cukier et al., 1973; Saltelli et al., 2010) and polynomial chaos expansion (PCE) (Kalinina
et al., 2020; Cheng and Lu, 2018), which use Fourier and polynomial bases, as the names
suggest. Tsokanas et al. (2021) use PCE, kriging, and polynomial chaos kriging surrogates
for estimating sensitivity indices for a virtual hybrid model representing a prototype mo-
torcycle. Stephens et al. (2011) compare radial basis functions, neural networks, and least
squares support vector machines for surrogate-based sensitivity analysis of a computational
fluid dynamics model. Le Gratiet et al. (2017) demonstrate the use of Gaussian processes to
obtain confidence intervals on sensitivity indices for a truss structure engineering model, as
well as PCE for point estimates.

Both approaches to surrogate-based sensitivity analysis face the same issue: the esti-
mates that use f in place of f ∗ do not truly estimate S, but rather the quantity Sf :=
E [Var (f(Xi, Zi) | Z)] /Var (f(Xi, Zi)) , where the difference Sf − S is unknown, making it
hard to rigorously quantify the error of the estimates Ŝf with respect to S. This is because
there is now a surrogate error (i.e., Sf −S) in addition to the sampling error (Ŝf −Sf ) in the
estimates. Janon et al. (2014) present a method that uses the MC estimates Ŝf to obtain
upper and lower bounds of Ŝ, but it requires a computationally intensive optimization pro-
cedure repeated over bootstrap samples as well as knowledge of the pointwise error bound
on |f(X,Z)− f ∗(X,Z)|, which is only computable for a few specific types of surrogates and
computational models. Janon et al. (2013) establish conditions on the rate of convergence of
a sequence of surrogates fn to f ∗ in order for Ŝfn to be consistent for S and asymptotically
normal in the double limit as n → ∞ and fn → f ∗, where the surrogate fn depends on
the sample size (e.g., if some fixed proportion of the data is used for training the surrogate
and the rest for computing Ŝfn). However, these conditions require convergence rates of
the model error to zero that are only satisfied by a limited class of computational model–
surrogate pairs, and thus the results are not applicable in general. Most recently, Panin
(2021) provides a bound on the surrogate error |Sf − S| that depends on the mean squared
error (MSE) of f and is estimable from data. We compare floodgate to their bounds both
theoretically (Section 2.4) and empirically (Section 3.4) by extending their methodology to
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obtain confidence intervals as well, demonstrating that floodgate produces intervals that are
consistently and substantially narrower than theirs.

As mentioned in Section 1.2, our method is an extension of the original floodgate method
for high-dimensional inference from Zhang and Janson (2020). Their algorithm outputs an
asymptotically valid lower confidence bound for the numerator of S in the general regression
setting. Instead of the lower-bound function used in Zhang and Janson (2020), we use the
function introduced in (Zhang, 2022), a later work focused on other estimands. Zhang and
Janson (2020) notes that the numerator of S can be upper-bounded as well, but that the
bound cannot be made tight except in the noiseless setting—an edge case in that paper
but the case of primary interest in this paper—so they do not pursue the idea further. In
contrast to these works, we derive and give full treatment to an upper confidence bound
(which is tight, as we work in the noiseless setting) so that we can provide a (two-sided)
confidence interval for S. Indeed, for sensitivity analysis, upper confidence bounds are often
of even more value than lower confidence bounds, as they allow dimensionality reduction via
dropping inputs with low sensitivities. We also present novel results on the asymptotic width
of our confidence interval and on the computational speedups floodgate offers compared to
non-surrogate-based sensitivity analysis methods, as well as numerical demonstration of
floodgate’s value for sensitivity analysis and efficient code1 in python to ease the use of
floodgate by others.

2 Methods

2.1 Bounds for the total-order sensitivity index

As outlined in Section 1.4, there are a number of existing estimators that are consistent
and asymptotically normal for S when using samples from the computational model f ∗, but
when a surrogate model f is substituted for f ∗, these properties are no longer guaranteed
for Ŝf . Indeed, as detailed in Section 1.4, for a fixed surrogate f (i.e., f does not change
with n), Ŝf will converge to a value Sf that is not equal to S in general. Thus, we would
like to have a way to leverage a surrogate model f to estimate S with a computable bound
on the error, ideally as small as possible.

We introduce a bias-aware surrogate-based method for inference on S that allows us to
quantify uncertainty in the form of confidence intervals. Floodgate uses surrogate examples
to estimate upper and lower bounds of S. In particular, we

(a) define functions ℓ(f) and u(f) such that ℓ(f) ≤ S ≤ u(f) for any surrogate f ,

(b) construct estimators ℓ̂n(f), ûn(f) that converge to ℓ(f) and u(f), respectively,

(c) derive a confidence interval [Ln, Un] with provable coverage for S.

The intuition behind this process is that if Ln is a lower confidence bound for ℓ(f), then it is
by construction also a lower confidence bound for S, and similarly for the upper confidence
bound Un.

1Code available at https://github.com/aufieroma12/floodgate
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We use the following upper- and lower-bound functions, whose numerators were originally
derived by Zhang and Janson (2020) and Zhang (2022), respectively. For any surrogate
f : Rd → R, define

u(f) =
E
[
(f ∗(X,Z)− E [f(X,Z)|Z])2

]
Var (f ∗(X,Z))

(2.1)

ℓ(f) = u(f)− E [(f ∗(X,Z)− f(X,Z))2]

Var (f ∗(X,Z))
, (2.2)

again with the convention that 0/0 = 0.1 The numerator of u(f) is simply the MSE of
fz(Z) := E [f(X,Z)|Z], which is a function of only Z, and the numerator of ℓ(f) is the
difference between this quantity and the MSE of f itself. Lemma 2.1 is a key result for
proving the accuracy and validity of floodgate. The proof of this lemma is provided in
Appendix A.2.

Lemma 2.1. For any f ∗ and f such that ℓ(f) and u(f) exist,

ℓ(f) ≤ ℓ(f ∗) = S = u(f ∗) ≤ u(f). (2.3)

2.2 Estimators and confidence intervals

Given samples {(Xi, Zi)}ni=1, we can construct simple MC estimators ℓ̂n(f) and ûn(f). We
start by defining the quantities

MSE(f) = E
[
(f ∗(X,Z)− f(X,Z))2

]
(2.4)

MSE(fz) = E
[
(f ∗(X,Z)− fz(Z))

2] . (2.5)

Thus, we can express u(f) = MSE(fz)
Var(f∗(X,Z))

and ℓ(f) = MSE(fz)−MSE(f)
Var(f∗(X,Z))

. If the samples (Xi, Zi)
are i.i.d., then we easily obtain unbiased MC estimators for each term in the numerators and
denominators by simply replacing the outer expectations with sample means. For MSE(f),
this is straightforward. We can compute the sample mean of

Mi := (f ∗(Xi, Zi)− f(Xi, Zi))
2 , (2.6)

for i ∈ {1, . . . , n} and use this as our estimator. Note that Mi is a (random) function of
f , but we drop the dependence on f in the notation for simplicity. Mi is trivially unbiased
for MSE(f). However, unbiased estimation of MSE(fz) and Var (f ∗(X,Z)) is somewhat less
straightforward as both are expected squared errors with respect to expectations which are
themselves generally intractable to compute analytically. For Var (f ∗(X,Z)), we can use the
standard unbiased variance estimator, which is the sample mean of

Vi :=
n

n− 1

(
f ∗(Xi, Zi)−

1

n

n∑
i′=1

f ∗(Xi′ , Zi′)

)2

. (2.7)

1Note that when Var (f∗(X,Z)) = 0, the numerator of u(f) is always non-negative (so u(f) may take
the value ∞) and the numerator of ℓ(f) is always non-positive (so ℓ(f) may take the value −∞). This is
clearly true for u(f) from (2.1) and follows for ℓ(f) from the proof in Appendix A.1.
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For MSE(fz), the challenge is dealing with the analytically intractable fz(Z) = E [f(X,Z)|Z].
Assuming that we can sample K ≥ 1 copies X̃

(k)
i of Xi from the conditional distribution

PXi|Zi
, where each X̃

(k)
i is conditionally independent of Xi, then for each i ∈ {1, . . . , n} we

can estimate fz(Zi) with

1

K

K∑
k=1

f(X̃
(k)
i , Zi),

which we will use in our estimator for MSE(fz). In particular, the quantity

M z
i :=

(
f ∗(Xi, Zi)−

1

K

K∑
k=1

f(X̃
(k)
i , Zi)

)2

− 1

K + 1

(
f(Xi, Zi)−

1

K

K∑
k=1

f(X̃
(k)
i , Zi)

)2

(2.8)
is unbiased for MSE(fz). This is formalized in Lemma 2.2, the proof of which is provided in
Appendix A.3. Again, we drop the dependence of M z

i on f in the notation for simplicity.

Lemma 2.2. For K ≥ 1, given a set of i.i.d. original samples {(Xi, Zi)}ni=1 and modified

samples X̃
(1)
i , . . . , X̃

(K)
i ∼ PXi|Zi

such that X̃
(k)
i ⊥⊥ Xi|Zi for each i, k, then for any f ∗, f :

Rd → R, the quantity M z
i defined in (2.8) satisfies:

E [M z
i ] = MSE(fz).

Since {(M z
i ,Mi, Vi)}ni=1 are i.i.d. and unbiased for (MSE(fz),MSE(f),Var (f ∗(X,Z))),

their sample means M̄ z, M̄ , and V̄ are asymptotically normal estimators for their respective
estimands. We can then combine these to get estimators for ℓ(f) and u(f) that are also
asymptotically normal by the delta method. In particular, the estimators are

ℓ̂n(f) =
M̄ z − M̄

V̄
(2.9)

ûn(f) =
M̄ z

V̄
. (2.10)

Due to the asymptotic normality of these estimators, it is straightforward to obtain
asymptotically valid upper and lower confidence bounds, as described in Algorithm 1.
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Algorithm 1 Floodgate for surrogate-based sensitivity analysis

Input: Samples {(Xi, Zi)}ni=1, surrogate f : Rd → R, K ∈ N, and confidence level α ∈ (0, 1).
For each i ∈ {1, . . . , n}, compute M z

i , Mi, Vi according to (2.8), (2.6), and (2.7), their
sample means (M̄ z, M̄ , V̄ ), and their 3× 3 sample covariance matrix Σ̂.
If V̄ = 0, set Ln = 0 and Un = 1. Else, compute

s2u =
1

V̄ 2

(
Σ̂11 − 2

M̄ z

V̄
Σ̂13 +

(M̄ z

V̄

)2
Σ̂33

)
and s2ℓ =

1

V̄ 2

(
Σ̂11 + Σ̂22 +

(
M̄ z − M̄

V̄

)2

Σ̂33 − 2Σ̂12 + 2
M̄ z − M̄

V̄

(
Σ̂23 − Σ̂13

))
,

and set Ln = max

{
0,

M̄ z − M̄

V̄
−

zα/2sℓ√
n

}
and Un = min

{
1,

M̄ z

V̄
+

zα/2su√
n

}
.

Output: Confidence interval [Ln, Un].

Theorem 2.3 establishes the asymptotic coverage of the interval [Ln, Un], and the proof
is given in Appendix A.4. It requires only very mild moment assumptions that are standard
for the central limit theorem (CLT). We need f ∗(X,Z) and f(X,Z) to have finite fourth
moments rather than the standard second moments because of the squared terms in the
estimators and estimands.

Theorem 2.3. (Asymptotic coverage). For i.i.d. samples {(Xi, Zi)}ni=1, any computational
model f ∗ and surrogate f : Rd → R, and any α ∈ (0, 1), if E

[
f ∗4(X,Z)

]
,E [f 4(X,Z)] < ∞,

then the bounds Ln and Un output by Algorithm 1 satisfy

lim inf
n→∞

P (Ln ≤ S ≤ Un) ≥ 1− α.

Note that the validity of the confidence interval derived from f does not depend on f
itself. We do not require any conditions on the quality of f—in fact, a less accurate f would
tend to have higher coverage, since ℓ(f) and u(f) would span S by a wider margin, whereas
the confidence bounds derived from a näıve surrogate-based estimator such as Ŝf in (1.3)
are not guaranteed to cover the true value at all when f differs from f ∗.

Of course, in practice we hope that f is an accurate surrogate for f ∗. Since there are very
few assumptions on the properties of f , we can leverage state-of-the-art machine learning
algorithms and arbitrary domain knowledge to construct a surrogate that is as accurate as
possible. For example, f can be any of the various types of machine learning, physically-
based, or hybrid surrogate models described in Section 1.4, with the only restriction being
that it is independent of the data used for constructing the floodgate bounds (e.g., if f is
fitted via machine learning, its training data should be independent of the data used to
compute Ln and Un). Theorem 2.4 establishes that the width of the confidence interval
[Ln, Un] converges to a value depending on the accuracy of f , and it does so at an Op(n

−1/2)
rate. Thus, when f is very close to f ∗, we can asymptotically achieve very tight bounds
while still guaranteeing coverage. The proof of Theorem 2.4 is provided in Appendix A.5.
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Theorem 2.4. (Width of confidence intervals). Under the same assumptions as in Theo-
rem 2.3 and the additional assumption that Var (f ∗(X,Z)) > 0, the bounds Ln and Un output
by Algorithm 1 satisfy

Un − Ln≤
MSE(f)

Var (f ∗(X,Z))
+Op

(
n−1/2

)
.

2.3 Computational savings

We consider here the computational expense of floodgate when applied to every input of f ∗.
Thus, for the remainder of this section (and in Sections 3 and 4), we will explicitly label the
total-order sensitivity index for the jth input using Sj (i.e., Sj corresponds to labelling the
jth input as X).

For an individual sensitivity index, Algorithm 1 requires a set of only n points (Xi, Zi)

evaluated by f ∗, plus an additional K samples (X̃
(k)
i , Zi) evaluated by f for each i ∈

{1, . . . , n}, for a total of nK evaluations of f . While these nK evaluations of f on the
resampled inputs are distinct for each of the d sensitivity indices, the same set of n original
points evaluated by f ∗ are used every time. Since we generally assume that the surrogate
is much less expensive to evaluate than f ∗, we expect the cost of the ndK total evaluations
of f necessary for inference on the full set of {Sj}dj=1 is negligible compared to the n total
evaluations of f ∗ necessary. If we need to train the surrogate ourselves first, this will require
an additional ntrain evaluations of f ∗.

For comparison, n-sample estimation of all d sensitivity indices by Ŝ requires n(d + 1)
total evaluations of f ∗. Note that whenK = 1 and f = f ∗, ℓ̂n(f) = ûn(f) = Ŝ, so in the ideal
case where we have a surrogate that is perfectly accurate and takes zero computation time,
the output of floodgate with K = 1 is identical to estimation/inference using Ŝ but with
computation time lower by a factor of 1/(d + 1) (and floodgate will only be more accurate
with largerK). In general (continuing to assumeK = 1 for simplicity), if we let c denote how
many times higher f ∗’s computational expense is than f ’s, the same speedup approximately
holds as long as c ≫ d and as long as MSE(f)/Var (f ∗(X,Z)) ≪ n−1/2. If one or both
of these conditions do not hold, the computational advantage of floodgate will be less than
a factor of 1/(d + 1), though the speedup may still be significant. Floodgate’s advantage

disappears roughly when MSE(f)/Var (f ∗(X,Z)) ≳
(
n(1

c
+ 1

d
)
)−1/2

, which makes intuitive
sense since it means the surrogate is either not particularly fast or not particularly accurate
(or both), and naturally we should not expect to be able to leverage such a low-quality
surrogate to beneficial effect.

Another advantage of floodgate compared to most non-surrogate methods is that it can
be applied to almost any pre-existing dataset—which may have been collected for a pur-
pose unrelated to sensitivity analysis or obtained from another source—without the need for
additional evaluations of f ∗. While we present our results for the case of i.i.d. data, they gen-
eralize to any sampling scheme that is compatible with asymptotically normal estimation of
expectations of functions of the samples. For example, CLTs exist for Latin hypercube sam-
pling (Owen, 1992) and general randomized quasi-Monte Carlo sampling techniques (Owen,
2013), which are frequently used in sensitivity analysis because they achieve faster rates
of convergence than standard MC estimation. Indeed, we demonstrate the application of
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floodgate to a dataset of non-i.i.d. samples in Section 4.

2.4 Comparison to existing bounds on error of Ŝf

As mentioned in Section 1.4, Panin (2021) proved bounds on the surrogate error term |Sf−S|
and provide a method for estimating those bounds. In particular, Corollary 1 of their paper
establishes the bound

|Sf − S| ≤ min
{
1, E + 2

√
S, E + 2

√
1− S

}
E , (2.11)

where E =
√
MSE(f)/Var (f ∗(X,Z)). Therefore, adding and subtracting the bound on the

right-hand side of (2.11) to the surrogate sensitivity Sf yields an interval guaranteed to
contain the true sensitivity S. Note that if S is not exactly 0 or 1, then as f converges to
f ∗, the width of this interval is O(E).

The interval [ℓ(f), u(f)] that we provide in Section 2.1 is also guaranteed to contain the
true sensitivity S, but its width is only O(E2), so it shrinks at a much faster rate as the
quality of the surrogate improves (i.e., MSE(f) → 0). In fact, since its width is exactly
E2 (see (2.2)), by comparing E2 to each of the three terms in the bound in (2.11), it is
immediate that our interval [ℓ(f), u(f)] is strictly narrower than that derived from (2.11)
whenever S /∈ {0, 1} and when E < 1, the latter of which we would expect to be true for any
reasonable surrogate.

Panin (2021) also propose a natural plug-in estimator for the bound in (2.11) in Sec-
tion 3.1.2., which we note can be extended to obtain confidence intervals as well via a similar
CLT argument to what we use. While computing Ŝf requires no evaluations of f ∗ (or ntrain

evaluations if f must be trained from scratch), one still needs n > 1 samples from f ∗ in
order to estimate E . Thus, computing confidence intervals for a set of d sensitivity indices
requires n evaluations of f ∗ (and nd evaluations of f), similar to floodgate.

We perform empirical comparisons of our bound to Panin (2021)’s in Sections 3.4 and 4.

3 Simulations

3.1 Overview of computational model

We conducted numerical experiments using the Hymod (Boyle, 2001; Wagener et al., 2001)
hydrological model to demonstrate floodgate’s guarantees on coverage and the relative widths
of its confidence intervals compared to standard SPF estimators. Hymod is relatively sim-
ple, low-dimensional, and inexpensive to evaluate (though still slower than most common
surrogates). Thus, it would not likely be necessary to use a surrogate for it and it would
not be the ideal target of floodgate in practice; however, it was a good candidate for these
simulations because it is so inexpensive to evaluate, meaning we were able to run many in-
dependent trials and obtain precise approximations of the sensitivity indices for reference.
In addition, Hymod has been used frequently within the sensitivity analysis literature as a
test case for new methods (e.g., Herman et al. (2013); Razavi and Gupta (2016); Cheng and
Lu (2018); Sheikholeslami and Razavi (2020)).
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There are five uncertain parameters in the model governing the mechanics of the system,
and we treat these as the model inputs whose sensitivities we study. The names, descriptions,
units, and ranges of these inputs are given in Table 1 in Appendix A.6. We used forcing
data and observed outputs obtained from the Leaf Catchment in Mississippi (Pianosi and
Wagener, 2016) in these experiments. An implementation of Hymod in Python was obtained
from the SAFE Toolbox (Pianosi and Wagener, 2016).

3.2 Simulation setup

The response variable we considered for the Hymod simulations was the Nash–Sutcliffe effi-
ciency criterion (NSE) (Nash and Sutcliffe, 1970). The NSE is a very commonly used metric
in hydrology to assess how well model predictions agree with observed data. It is often used
in sensitivity analysis studies, since it helps understand what inputs significantly impact
model accuracy and thus should be calibrated more carefully, or what inputs have a very
small effect and could thus be fixed or dropped for model simplification.

Since we need to be able to draw i.i.d. samples (Xi, Zi) and conditionally i.i.d. samples

X̃
(k)
i for each sensitivity index, we must define the joint input distribution. As is standard

in other global sensitivity analysis studies of this model, we assumed that the inputs were
independent and followed uniform distributions. The ranges we used for each variable’s
distribution are provided in Table 1 in Appendix A.6.

We applied floodgate to compute confidence intervals for the full set of d = 5 sensitivity
indices using different computational budgets N ranging from 100 to 50000 (to be defined
shortly). We compare our intervals to asymptotically normal confidence intervals derived
from Ŝ (1.2) and Ŝf (1.3), clipping the bounds to be within [0, 1]. In Section 3.4 we also
provide a more detailed comparison to the error bounds from Panin (2021). We define the
computational budget as the total number of evaluations of f ∗ required in the full process
of estimating all d sensitivity indices.

• For floodgate, the full set of n = N evaluations of f ∗ is used for each input. Recall
that floodgate uses the same set {f ∗(Xi, Zi)}ni=1 and distinct sets of nK evaluations of
f for each input.

• For the non-surrogate SPF estimator Ŝ, only n = N/(d + 1) pairs of evaluations of
f ∗ are used for each input. Recall that computation of each Ŝ uses the same set
{f ∗(Xi, Zi)}ni=1 and a distinct set {f ∗(X̃i, Zi)}ni=1 for each input.

This relationship between n and N puts floodgate and Ŝ on an equal computational footing,
assuming that evaluation of f is negligible compared to f ∗. However, since we use pretrained
surrogates, it is not possible to do the same for Ŝf as it uses no evaluations from f ∗. We
choose to use n = N pairs of evaluations of f for each input. While n could have been
chosen to be arbitrarily large for Ŝf , the main conclusion about Ŝf from these experiments
is its lack of coverage, which is only more evident at larger sample sizes.

Note that if one did not have a pretrained surrogate and had to train one from scratch,
then for floodgate, some fraction of the N samples (e.g., N/2) would have to be reserved
for training, while the remaining n = N/2 are used for computing the confidence intervals.
In this case, the surrogate-based SPF estimator Ŝf would use all N samples to train and 0
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samples from f ∗ plus an arbitrary number of samples from f for inference. The relationship
between n and N remains unchanged for Ŝ since it does not use a surrogate.

To simulate having surrogates of various qualities, we conducted all experiments us-
ing kernel ridge regression (KRR) with radial basis function kernel pretrained on different
amounts of data. In particular, we train low-quality (MSE(f)/Var (f ∗(X,Z)) ≈ 0.07; dashed
lines) and high-quality (MSE(f)/Var (f ∗(X,Z)) ≈ 0.01; solid lines) surrogates. In practice,
we would expect the type of surrogates used to incorporate specific domain knowledge and
potentially to have been trained offline and made publicly available, rather than be fitted
by an out-of-the-box machine learning model as done here. However, Hymod is simple and
low-dimensional enough that there are no existing high-fidelity surrogates, so fitting a non-
parametric model on a large separate dataset provided a reasonable alternative for obtaining
surrogates to test our method.

3.3 Results

As mentioned in Section 2.3, we will index Sj (and similarly for its estimators) here to
explicitly denote the total-order sensitivity index for the jth input, since we apply floodgate
and other methods to every input. Figure 1 shows the confidence intervals obtained by
floodgate and the two other methods, along with their empirical coverage. The curves in the
confidence bound plots are the averages over 1000 independent trials. All standard errors
are less than 0.008 on the left-hand sides of the plots and less than 0.001 on the right-hand
sides. The horizontal dotted red lines in the confidence bound plots represents the “ground
truth” Sj values, which were estimated using a consistent estimator with 108 samples. These
ground truth values were used for computing the coverage. The horizontal dotted red lines
in the coverage plots represent the nominal level of 95%.

These plots demonstrate that floodgate can output narrow (and valid) confidence intervals
when using an accurate surrogate. Our high-quality intervals (solid green curves) are almost
always tighter than those using the non-surrogate SPF estimator (blue curves) for smaller
sample sizes. For example, for the input Rf, our estimated interval is [0.467, 0.757] for 100
model evaluations, whereas the non-surrogate-based method gives the much wider interval
[0.1160.758]. For the input Rs, we provide an upper confidence bound of 0.102 for N = 100,
whereas the non-surrogate-based method’s is more than double that (0.228).

In addition, our coverage is almost always valid with only a few small violations at the
smallest sample sizes, and it is consistently higher than the other methods’, even when
our intervals are narrower. Some of the reasons contributing to this is that each of our
estimators gets to use d + 1 = 6 times as many samples evaluated by f ∗ as Ŝj due to
the computational budget constraints (putting floodgate closer to “asymptopia”) and our
bounds are conservative against the bias of f . While the surrogate-based SPF estimator
(orange curves) also outputs narrow confidence intervals, they fail to account for surrogate
inaccuracy and thus have no guarantees on validity, as demonstrated in the coverage plots.
Thus, this estimator can output very high confidence for an incorrect estimate. As an
example, on the right-hand side of the plot for the input Sm, the low-quality surrogate-
based SPF method outputs a very narrow interval around a value roughly double the true
value—the coverage here is of course zero.

As mentioned in Section 3.1, these results are all for a low-dimensional model where the
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Figure 1: 95% confidence intervals and empirical coverage for the Hymod model sensitivity
indices using floodgate and the non-surrogate- and surrogate-based SPF estimators with
different quality surrogates.

14



advantage of floodgate should be particularly unpronounced. We were able to achieve much
narrower intervals (while maintaining valid coverage) than the non-surrogate-based method
with just 6 times the number of samples here, but for a higher-dimensional model we would
expect to gain a larger advantage—we will demonstrate an application of floodgate to a
roughly 100-dimensional model in Section 4.

3.4 Comparison to Existing Bounds on the Error of Ŝf

We also compare floodgate to the bounds derived by Panin (2021), discussed in Section 2.4.
In particular, we compare our confidence intervals for each Sj to those computed by adding

and subtracting their estimated bound on surrogate error to Ŝf
j and applying the CLT with

the multivariate delta method, clipping the bounds to be within [0, 1]. Figure 2 shows the
width of each method’s confidence intervals averaged over 1000 independent trials along
with their empirical coverage for different values of the computational budget N and using
low-quality and high-quality surrogates. All standard errors are less than 0.0083 on the
left-hand sides of the plots and less than 0.0004 on the right-hand sides. The dependence
on N for floodgate (green curves) is the same as in the previous section. For the confidence
intervals based on Panin (2021)’s bounds (purple curves), all N evaluations of f ∗ are used
to estimate E , and we again use n = N pairs of samples from f for computing Ŝf

j . Thus,
both methods use N total evaluations from f ∗. We chose to plot the widths of the intervals
rather than the intervals themselves on the same set of axes as in Figure 1 because both
methods give the same guarantees on coverage of Sj, and thus the positions of the intervals
are less interesting than their relative widths. Indeed, both methods’ empirical coverage is
valid almost everywhere, reaching practically 100% on the right-hand side of the plots since
both methods’ bounds are conservative.

We see that the width of our confidence intervals are consistently substantially smaller
than those of Panin (2021) for each sensitivity index and surrogate. The empirical coverage
for both methods is above the nominal level in nearly every setting. Floodgate’s coverage
does dip below most notably for the input Sm for smaller N values, though even in this case it
never falls below 80%. The intervals derived using Panin (2021)’s bounds tend to have higher
coverage than the floodgate interval, which is expected given that their bounds are looser in
the accurate-surrogate regime as shown in Section 2.4. Coverage for both methods becomes
consistently ≥95% as N increases, as they both have the same asymptotic guarantees.

We thus demonstrate that floodgate achieves rigorous quantification of the uncertainty
of surrogate-based estimates using tighter bounds than those provided by Panin (2021).

4 Application

4.1 Overview of computational model and surrogate

To demonstrate a more realistic application of floodgate, we used the Carbon Bond Mecha-
nism Z (CBM-Z) meteorological model (Zaveri and Peters, 1999) for simulating tropospheric
gas-phase chemistry. It is both higher-dimensional and more computationally expensive than
Hymod, and there are existing surrogates that have been built for it. CBM-Z models the evo-
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Figure 2: Widths of 95% confidence intervals and empirical coverage for the Hymod model
sensitivity indices using floodgate and Panin (2021)’s bounds with different quality surro-
gates.

lution of 101 gaseous and aerosol species over a given time period by numerically integrating
a system of partial differential equations. In addition to the initial concentrations of each
species, the model has four additional meteorological inputs: temperature, pressure, relative
humidity, and the cosine of the solar zenith angle. While we use a stand-alone version of
CBM-Z for our experiments, it is commonly employed as the gas-phase chemistry module
within larger chemistry transport models used for air quality forecasting, and it is typically
the most time-consuming component (Wang et al., 2019).

For our experiments, we used a multitarget regression neural network surrogate from
Kelp et al. (2020). The network consists of an encoder that reduces the input concentrations
to a lower-dimensional latent representation, an operator that approximates the integration
step in the latent space, and a decoder that maps the integrated system back to the original
space. The operator can be applied recurrently to make predictions over arbitrary time
scales. For a 24-hour simulation, Kelp et al. (2020) report a speedup by a factor of roughly
3700 compared to the true CBM-Z model on the same hardware, while maintaining high
accuracy for various outputs of interest on an independent test set of randomly sampled
inputs.

4.2 Experimental setup

We consider the predicted concentration of ozone (O3) over a 2-hour interval as the response
variable of interest. Ozone is a common subject of sensitivity analysis studies with atmo-
spheric chemistry models, as in Constantin and Barrett (2014) and Christian et al. (2018),
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since it has a high impact on air quality. We chose 2 hours as the time interval because we
found that the surrogate from Kelp et al. (2020) was most accurate at this time scale, with
MSE(f)/Var (f ∗(X,Z)) ≈ 0.06.

Since we did not have access to a working implementation of the CBM-Z model, we
used a dataset of 80,000 samples provided by Kelp et al. (2020) that was independent of
the data used for training and validating their surrogate. The initial concentrations and
meteorological inputs were sampled from independent uniform distributions with ranges
outlined in Kelp et al. (2020). In particular, the dataset consists of 625 i.i.d. batches of
samples, where each batch is a full Latin hypercube with 128 points. Thus, we used sample
sizes that were multiples of 128 and applied the CLT to the means within each batch for
deriving confidence intervals.

We again compare floodgate to the confidence intervals given by the surrogate-based
SPF estimator Ŝf

j and using the error bounds from Panin (2021) for every input. Since the
implementation of the CBM-Z model used by Kelp et al. (2020) to train their surrogate was
proprietary and not available to us, we were not able to evaluate f ∗ ourselves and thus could
not implement the non-surrogate baseline for these experiments. As discussed in Section 2.3,
the fact that floodgate can be applied to a pre-existing dataset is itself an advantage over
the estimator Ŝj.

As in Sections 3.2 and 3.4, for a given computational budget N , floodgate uses the full
set of N samples from f ∗ to estimate each sensitivity index. Panin (2021)’s bounds use all
N samples to estimate E . Again, since Ŝf

j does not use any evaluations of f ∗, it has no
dependence on N , so we choose to evaluate it with n = N terms in the summation for each
sensitivity index as well.

4.3 Results

Figure 3 shows the confidence intervals obtained by floodgate, the surrogate-based SPF
estimator, and Panin (2021)’s bounds for a representative subset of the inputs (the plots for
the full set of inputs can be found in Appendix A.7). In this case, since we have only a small
dataset that does not contain samples in the paired form required for an SPF estimator,
we cannot obtain sufficiently precise estimates of the ground truth sensitivities to add the
horizontal red lines to the plots or to calculate coverage.

For most of the inputs, the estimated sensitivities were very close to 0, and their plots
look almost identical to that for HCl. This is because the green and purple curves are
essentially the same when Ŝf

j ≈ 0, since both give lower bounds of 0, and the error bound in

(2.11) will be simply E2, which is the same as the width of our intervals. However, when Ŝf
j

is even slightly above 0, the gap between the green and purple upper bounds becomes quite
noticeable, as in the plot for OLEI. For O3, which naturally has the highest sensitivity of all
the inputs, Panin (2021)’s confidence interval is roughly twice as wide as ours for N = 512,
and it is nearly five times wider than ours for N = 80000. The intervals derived using the
surrogate-only method (orange curves) converges to a value outside our interval entirely,
which again demonstrates that this näıve method can give high confidence for an incorrect
result.
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Figure 3: 95% confidence intervals for a representative subset of sensitivity indices for
the CBM-Z model using floodgate, the surrogate-based SPF estimator, and Panin (2021)’s
bounds.

5 Conclusion

We present a novel method, floodgate, for conducting statistically rigorous sensitivity analy-
sis using surrogate models to achieve substantial computational speedups relative to existing
methods. Floodgate provides asymptotically valid confidence intervals whose accuracy di-
rectly improves with the quality of the surrogate used. Since all of our theoretical results are
very general, the method can be applied to any computational model with any surrogate,
allowing users to take full advantage of arbitrary domain knowledge and state-of-the-art ma-
chine learning models, regardless of their complexity, to achieve results that are as accurate
as possible. Furthermore, the confidence intervals provide rigorous quantification of the un-
certainty of surrogate-based estimates, informing the user as to when they can and cannot
be trusted.

We highlight some of the advantages of floodgate compared to existing work empirically
through simulations with the relatively simple Hymod hydrological model in Section 3 and
in a more realistic application to the CBM-Z meteorological model in Section 4. These
results validate the fact that having a high-quality surrogate allows us to obtain very tight
bounds, and when this is not the case, our confidence intervals account for the surrogate’s
inaccuracy and still provide valid coverage. We compare floodgate both theoretically and
empirically to similar results for statistically valid surrogate-based inference from Panin
(2021), and we show that the confidence intervals we provide are significantly narrower
while still maintaining coverage.

More broadly, we see the future implications of our work in this paper as aiding in the
general goal of being able to study complex, expensive models through their less-expensive
surrogates without sacrificing statistical guarantees. Computational models are used in
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several high-stakes settings, aiding in important scientific discoveries, shaping engineering
designs, and making forecasts or simulations that inform high-impact decisions; thus it is
crucial to have both an accurate understanding of the input-output relationships in these
models, as well as to be conscious of the uncertainty in the studies we perform. This principle
extends beyond just sensitivity analysis, applying to all forms of inference on the models’
features and outputs in which one might be interested.
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A Appendix

A.1 Numerator of ℓ(f)

From (2.1) and (2.2), we can write

ℓ(f) =
E [(f ∗(X,Z)− fz(Z))

2]− E [(f ∗(X,Z)− f(X,Z))2]

Var (f ∗(X,Z))
.

When Var (f ∗(X,Z)) = 0, we have f ∗(X,Z)
a.s.
= E [f ∗(X,Z)] =: a. In this case, the numera-

tor of ℓ(f) simplifies to

E
[
(a− fz(Z))

2
]
− E

[
(a− f(X,Z))2

]
= a2 − 2aE [fz(Z)] + E

[
f 2
z (Z)

]
−
(
a2 − 2aE [f(X,Z)] + E

[
f 2(X,Z)

])
= E

[
f 2
z (Z)

]
− E

[
f 2(X,Z)

]
− 2a (E [fz(Z)]− E [f(X,Z)])

= − E
[
f 2
z (Z)

]
+ 2E [fz(Z)f(X,Z)]− E

[
f 2(X,Z)

]
− 2a (E [f(X,Z)]− E [f(X,Z)])

= − E
[
(f(X,Z)− fz(Z))

2
]
, (A.1)

where the third equality follows from the law of iterated expectations:

E [fz(Z)] = E [E [f(X,Z)|Z]] = E [f(X,Z)]

and

E [fz(Z)f(X,Z)] = E [E [fz(Z)f(X,Z)|Z]] = E [fz(Z)E [f(X,Z)|Z]] = E
[
f 2
z (Z)

]
.

Note that the term in (A.1) is always non-positive. In particular, it will be 0 when Var (f(X,Z)|Z) a.s.
=

0, meaning that ℓ(f) = 0 by definition, and it will be negative when E [Var (f(X,Z)|Z)] > 0,
meaning that ℓ(f) can take the value −∞.

A.2 Proof of Lemma 2.1

Lemma. For any f ∗ and f such that ℓ(f) and u(f) exist,

ℓ(f) ≤ ℓ(f ∗) = S = u(f ∗) ≤ u(f).

Proof. Recall the definition of the function fz(Z) = E [f(X,Z)|Z] from Section 2.1, and
similarly define

f ∗
z (Z) = E [f ∗(X,Z)|Z] .

We can rewrite the expressions for u(f) and S given in (2.1) and (1.1) as

u(f) =
E
[
(f ∗(X,Z)− fz(Z))

2]
Var (f ∗(X,Z))

and S =
E
[
(f ∗(X,Z)− f ∗

z (Z))
2]

Var (f ∗(X,Z))
.

When Var (f ∗(X,Z)) = 0, S = 0 by definition, u(f) can take the values 0 or ∞, and ℓ(f)
can take the values 0 or −∞, so the inequality holds.
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When Var (f ∗(X,Z)) > 0, in order to prove that u(f) ≥ S, it suffices to show D1 :=
E
[
(f ∗(X,Z)− fz(Z))

2]−E
[
(f ∗(X,Z)− f ∗

z (Z))
2] ≥ 0. With some algebraic manipulation,

we have

D1 = E
[
(f ∗(X,Z)− f ∗

z (Z) + f ∗
z (Z)− fz(Z))

2]− E
[
(f ∗(X,Z)− f ∗

z (Z))
2]

= E
[
(f ∗(X,Z)− f ∗

z (Z))
2]+ 2E [(f ∗(X,Z)− f ∗

z (Z)) (f
∗
z (Z)− fz(Z))]

+ E
[
(f ∗

z (Z)− fz(Z))
2]− E

[
(f ∗(X,Z)− f ∗

z (Z))
2]

= 2E [(f ∗(X,Z)− f ∗
z (Z)) (f

∗
z (Z)− fz(Z))] + E

[
(f ∗

z (Z)− fz(Z))
2] (A.2)

We can expand the expectation in the first term in (A.2) to get

E
[
(f ∗(X,Z)− f ∗

z (Z)) (f
∗
z (Z)− fz(Z))

]
= E [f ∗(X,Z) (f ∗

z (Z)− fz(Z))]− E [f ∗
z (Z) (f

∗
z (Z)− fz(Z))]

= E [E [f ∗(X,Z)(f ∗
z (Z)− fz(Z)) | Z]]− E [f ∗

z (Z)(f
∗
z (Z)− fz(Z))]

= E [E [f ∗(X,Z) | Z] (f ∗
z (Z)− fz(Z))]− E [f ∗

z (Z)(f
∗
z (Z)− fz(Z))]

= E [f ∗
z (Z)(f

∗
z (Z)− fz(Z))]− E [f ∗

z (Z)(f
∗
z (Z)− fz(Z))]

= 0.

Therefore, by plugging this into (A.2), we have

D1 = E
[
(f ∗

z (Z)− fz(Z))
2] ≥ 0. (A.3)

Now, we consider the lower bound ℓ(f) from (2.2). Again, to prove ℓ(f) ≤ S, it suffices to
showD2 :=

(
E
[
(f ∗(X,Z)− fz(Z))

2]− E
[
(f ∗(X,Z)− f(X,Z))2

])
−E

[
(f ∗(X,Z)− f ∗

z (Z))
2] ≤

0. Note that
D2 = D1 − E

[
(f ∗(X,Z)− f(X,Z))2

]
. (A.4)

Since we found D1 in (A.3), we just need to deal with this second term. Define the functions

h(X,Z) = f(X,Z)− fz(Z)

h∗(X,Z) = f ∗(X,Z)− f ∗
z (Z).

Thus, we can rewrite

E
[
(f ∗(X,Z)− f(X,Z))2

]
= E

[
(h∗(X,Z) + f ∗

z (Z)− h(X,Z)− fz(Z))
2]

= E
[
(h∗(X,Z)− h(X,Z))2

]
+ 2E [(h∗(X,Z)− h(X,Z)) (f ∗

z (Z)− fz(Z))]

+ E
[
(f ∗

z (Z)− fz(Z))
2] . (A.5)

From (A.3), (A.4), and (A.5), we have

D2 = −E
[
(h∗(X,Z)− h(X,Z))2

]
− 2E [(h∗(X,Z)− h(X,Z)) (f ∗

z (Z)− fz(Z))] . (A.6)
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Simplifying the expectation in the second term in (A.6), we have

E [(h∗(X,Z)− h(X,Z)) (f ∗
z (Z)− fz(Z))] = E [E [(h∗(X,Z)− h(X,Z)) (f ∗

z (Z)− fz(Z)) | Z]]
= E [E [(h∗(X,Z)− h(X,Z)) | Z] (f ∗

z (Z)− fz(Z))]

= 0,

where the last equality holds because E [h∗(X,Z) | Z] a.s.
= E [h(X,Z) | Z] a.s.

= 0 by definition.
Finally, plugging this into (A.6), we have

D2 = −E
[
(h∗(X,Z)− h(X,Z))2

]
≤ 0. (A.7)

Finally, it is clear from (A.3) and (A.7) that

ℓ(f ∗) = S = u(f ∗).

A.3 Proof of Lemma 2.2

Lemma. For K ≥ 1, given a set of i.i.d. original samples {(Xi, Zi)}ni=1 and modified samples

X̃
(1)
i , . . . , X̃

(K)
i ∼ PXi|Zi

such that X̃
(k)
i ⊥⊥ Xi|Zi for each i, k, then for any f ∗, f : Rd → R,

the quantity M z
i defined in (2.8) satisfies:

E [M z
i ] = MSE(fz).

Proof. We start by defining the term

F z
i :=

1

K

K∑
k=1

f(X̃
(k)
i , Zi),

so we can rewrite the expression for M z
i from (2.8) as

M z
i = (f ∗(Xi, Zi)− F z

i )
2 − 1

K + 1
(f(Xi, Zi)− F z

i )
2 ,

Note that

E [M z
i ] = E

[
(f ∗(X,Z)− F z

i )
2]− 1

K + 1
E
[
(f(X,Z)− F z

i )
2] , (A.8)

by linearity of expectation, so we can examine each term on the right hand side of (A.8)
separately. From here on, we drop the index i on random variables within expectations since
samples are i.i.d. Expanding the first term, we have

E
[
(f ∗(X,Z)− F z)2

]
= E

[
f ∗2(X,Z)

]
− 2E [f ∗(X,Z)F z] + E

[
F z2
]
. (A.9)
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Simplifying the expectation in the second term of (A.9), we get

E [f ∗(X,Z)F z] =
1

K
E

[
f ∗(X,Z)

K∑
k=1

f(X̃(k), Z)

]

=
1

K

K∑
k=1

E
[
f ∗(X,Z)f(X̃(k), Z)

]
= E

[
f ∗(X,Z)f(X̃(1), Z)

]
= E

[
E
[
f ∗(X,Z)f(X̃(1), Z) | Z

]]
= E

[
E [f ∗(X,Z) | Z]E

[
f(X̃(1), Z) | Z

]]
= E [f ∗(X,Z)E [f(X,Z) | Z]]
= E [f ∗(X,Z)fz(Z)] , (A.10)

where the third and sixth equalities use the fact that {X, X̃(1), . . . , X̃(K)} are all exchange-
able, the fourth and sixth lines apply the law of iterated expectations, and the fifth line
follows from the conditional independence of X and X̃(1).

Simplifying the expectation in the third term of (A.9), we get

E
[
F z2
]
=

1

K2
E

( K∑
k=1

f(X̃(k), Z)

)2


=
1

K2
E

[
K∑
k=1

f 2(X̃(k), Z) + 2
K∑
k=1

K∑
t=k+1

f(X̃(k), Z)f(X̃(t), Z)

]

=
1

K2

K∑
k=1

E
[
f 2(X̃(k), Z)

]
+

2

K2

K∑
k=1

K∑
t=k+1

E
[
f(X̃(k), Z)f(X̃(t), Z)

]
=

1

K
E
[
f 2(X,Z)

]
+

K − 1

K
E
[
f(X,Z)f(X̃(1), Z)

]
=

1

K
E
[
f 2(X,Z)

]
+

K − 1

K
E
[
E
[
f(X,Z)f(X̃(1), Z) | Z

]]
=

1

K
E
[
f 2(X,Z)

]
+

K − 1

K
E
[
E [f(X,Z) | Z]E

[
f(X̃(1), Z) | Z

]]
=

1

K
E
[
f 2(X,Z)

]
+

K − 1

K
E
[
(E [f(X,Z) | Z])2

]
=

1

K
E
[
f 2(X,Z)

]
+

K − 1

K
E
[
f 2
z (Z)

]
, (A.11)

where the fourth and seventh equalities follow from the exchangeability of {X, X̃(1), . . . , X̃(K)},
the fifth line follows from the law of iterated expectations, and the sixth line follows from
the conditional independence of X and X̃(1).

26



Substituting (A.10) and (A.11) into (A.9), we get

E
[
(f ∗(X,Z)− F z)2

]
= E

[
f ∗2(X,Z)

]
− 2E [f ∗(X,Z)fz(Z)] +

1

K
E
[
f 2(X,Z)

]
+

K − 1

K
E
[
f 2
z (Z)

]
= E

[
f ∗2(X,Z)

]
− 2E [f ∗(X,Z)fz(Z)] + E

[
f 2
z (Z)

]
+

1

K

(
E
[
f 2(X,Z)

]
− E

[
f 2
z (Z)

])
= E

[
(f ∗(X,Z)− fz(Z))

2
]
+

1

K
E
[
(f(X,Z)− fz(Z))

2
]
, (A.12)

where in the second term in the last line, we use the fact that the cross term E [f(X,Z)fz(Z)] =
E [f 2

z (Z)] by the law of iterated expectations.
Now we can simplify the expectation in the second term of (A.8). Expanding, we have

E
[
(f(X,Z)− F z)2

]
= E

(f(X,Z)− 1

K

K∑
k=1

f(X̃(k), Z)

)2


= E
[
f 2(X,Z)

]
− 2

K

K∑
k=1

E
[
f(X,Z)f(X̃(k), Z)

]
+ E

( 1

K

K∑
k=1

f(X̃(k), Z)

)2


= E
[
f 2(X,Z)

]
− 2E

[
f(X,Z)f(X̃(1), Z)

]
+

1

K2
E

( K∑
k=1

f(X̃(k), Z)

)2
 . (A.13)

We have already found the expectation of the last term here in (A.11). The middle term is
very similar to (A.10):

E
[
f(X,Z)f(X̃(1), Z)

]
= E

[
E
[
f(X,Z)f(X̃(1), Z) | Z

]]
= E

[
E [f(X,Z) | Z]E

[
f(X̃(1), Z) | Z

]]
= E

[
f 2
z (Z)

]
. (A.14)

Substituting (A.11) and (A.14) into (A.13), we get

E
[
(f(X,Z)− F z)2

]
= E

[
f 2(X,Z)

]
− 2E

[
f 2
z (Z)

]
+

1

K
E
[
f 2(X,Z)

]
+

K − 1

K
E
[
f 2
z (Z)

]
=

K + 1

K

(
E
[
f 2(X,Z)

]
− E

[
f 2
z (Z)

])
=

K + 1

K
E
[
(f(X,Z)− fz(Z))

2
]
, (A.15)

where the last line follows for the same reason as in (A.12).
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Finally, plugging (A.12) and (A.15) into (A.8), we have

E [M z
i ] = E

[
(f ∗(X,Z)− fz(Z))

2
]
+

1

K
E
[
(f(X,Z)− fz(Z))

2
]

− 1

K + 1

(
K + 1

K

)
E
[
(f(X,Z)− fz(Z))

2
]

= E
[
(f ∗(X,Z)− fz(Z))

2
]

= MSE(fz).

A.4 Proof of Theorem 2.3

Theorem. For i.i.d. samples {(Xi, Zi)}ni=1, any computational model f ∗ and surrogate
f : Rd → R, and any α ∈ (0, 1), if E

[
f ∗4(X,Z)

]
,E [f 4(X,Z)] < ∞, then the bounds Ln and

Un output by Algorithm 1 satisfy

lim inf
n→∞

P (Ln ≤ S ≤ Un) ≥ 1− α.

Proof. We first handle the case where Var (f ∗(X,Z)) = 0. Since this implies that V̄
a.s.
=

0, Algorithm 1 will return [0, 1] with probability 1. Since S = 0 by definition when
Var (f ∗(X,Z)) = 0, the floodgate interval has 100% coverage.

Now we consider the case where Var (f ∗(X,Z)) > 0. The first step in this proof is to
show that M̄ z, M̄ and V̄ are all asymptotically normal and consistent for MSE(fz), MSE(f),
and Var (f ∗(X,Z)), respectively. Since these estimators are sample means of i.i.d. terms
that we have already established are unbiased for their corresponding estimands, it suffices
to show that Var (M z

i ) ,Var (Mi) ,Var (Vi) < ∞, or equivalently that their second moments
are finite, in order to apply the CLT. As in the previous proof, we will drop the index i on
random variables withing expectations, since samples are i.i.d.

Starting with M , we have

E
[
M2
]
= E

[
(f ∗(X,Z)− f(X,Z))4

]
= E

[
f ∗4(X,Z)

]
− 4E

[
f ∗3(X,Z)f(X,Z)

]
+ 6E

[
f ∗2(X,Z)f 2(X,Z)

]
− 4E

[
f ∗(X,Z)f 3(X,Z)

]
+ E

[
f 4(X,Z)

]
< ∞,

where the final inequality holds because the first and last terms are finite by assumption,
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and the middle three terms can be bounded by Hölder’s inequality:∣∣E [f ∗3(X,Z)f(X,Z)
]∣∣ ≤ E

[∣∣f ∗3(X,Z)f(X,Z)
∣∣]

≤
(
E
[∣∣f ∗3(X,Z)

∣∣ 43 ]) 3
4 (

E
[
|f(X,Z)|4

]) 1
4

=
(
E
[
f ∗4(X,Z)

]) 3
4
(
E
[
f 4(X,Z)

]) 1
4

< ∞

0 ≤ E
[
f ∗2(X,Z)f 2(X,Z)

]
≤
(
E
[∣∣f ∗2(X,Z)

∣∣2]) 1
2 (E [|f 2(X,Z)|2

]) 1
2

=
(
E
[
f ∗4(X,Z)

]) 1
2
(
E
[
f 4(X,Z)

]) 1
2

< ∞∣∣E [f ∗(X,Z)f 3(X,Z)
]∣∣ ≤ E

[∣∣f ∗(X,Z)f 3(X,Z)
∣∣]

≤
(
E
[
|f ∗(X,Z)|4

]) 1
4

(
E
[
|f 3(X,Z)|

4
3

]) 3
4

=
(
E
[
f ∗4(X,Z)

]) 1
4
(
E
[
f 4(X,Z)

]) 3
4

< ∞.

Next, we consider M z. Define

T1 := (f ∗(X,Z)− F z)2 (A.16)

and T2 := (f(X,Z)− F z)2 , (A.17)

so that M z = T1 +
1

K+1
T2. Then,

E
[
M z2

]
= E

[
T 2
1

]
− 2

K + 1
E [T1T2] +

1

(K + 1)2
E
[
T 2
2

]
≤ E

[
T 2
1

]
+

1

(K + 1)2
E
[
T 2
2

]
, (A.18)

since T1, T2 ≥ 0 almost surely. We first consider T1:

E
[
T 2
1

]
= E

[
(f ∗(X,Z)− F z)4

]
= E

[
f ∗4(X,Z)

]
− 4E

[
f ∗3(X,Z)F z

]
+ 6E

[
f ∗2(X,Z)F z2

]
− 4E

[
f ∗(X,Z)F z3

]
+ E

[
F z4
]
.

(A.19)

The first term is finite by assumption, so E
[
F z4
]
< ∞ is sufficient to show E [T 2

1 ] < ∞,
since the middle three terms can all be bounded by Hölder’s inequality. Substituting in the
expression for F z, we have

E
[
F z4
]
=

1

K4
E

( K∑
k=1

f(X̃(k), Z)

)4
 . (A.20)
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While we spare the messy algebra here, expanding the right-hand side of (A.20) yields a sum

of the terms E [f 4(X,Z)], E
[
f 3(X̃(1), Z)f(X̃(2), Z)

]
, E
[
f 2(X̃(1), Z)f 2(X̃(2), Z)

]
,

E
[
f 2(X̃(1), Z)f(X̃(2), Z)f(X̃(3), Z)

]
, and E

[
f(X̃(1), Z)f(X̃(2), Z)f(X̃(3), Z)f(X̃(4), Z)

]
with

finite coefficients. The first of these expectations is finite by assumption, which also implies
the existence of the second expectation by applying Hölder’s inequality with p = 4

3
and of

the last three expectations by repeated application of Cauchy–Schwarz. Now we consider
T2:

E
[
T 2
2

]
= E

[
(f(X,Z)− F z)4

]
= E

[
f 4(X,Z)

]
− 4E

[
f 3(X,Z)F z

]
+ 6E

[
f(X,Z)2F z2

]
− E

[
f(X,Z)F z3

]
+ E

[
F z4
]
.

(A.21)

As in (A.19), the first term is finite by assumption, and since we already already established
E
[
F z4
]
< ∞, we can bound the middle three terms using Hölder’s inequality, and thus

E [T 2
2 ] < ∞. By (A.18), (A.19), and (A.21), we have E

[
M z2

]
< ∞.

Finally, E [V 2] < ∞ is immediate given E
[
f ∗4(X,Z)

]
< ∞.

Now, by the multivariate CLT,

√
n

(M̄ z

M̄
V̄

−

 MSE(fz)
MSE(f)

Var (f ∗(X,Z))

) L−→ N (0,Σ) ,

where

Σ =

Σ11 Σ12 Σ13

Σ12 Σ22 Σ23

Σ13 Σ23 Σ33

 :=

 Var (M z) Cov (M z,M) Cov (M z, V )
Cov (M z,M) Var (M) Cov (M,V )
Cov (M z, V ) Cov (M,V ) Var (V )

 .

Since we assume that Var (f ∗(X,Z)) > 0, we can apply the multivariate delta method
to get

√
n

σℓ

(
M̄ z − M̄

V̄
− MSE(fz)−MSE(f)

Var (f ∗(X,Z))

)
=

√
n

σℓ

(
ℓ̂n(f)− ℓ(f)

)
L−→ N (0, 1), (A.22)

√
n

σu

(
M̄ z

V̄
− MSE(fz)

Var (f ∗(X,Z))

)
=

√
n

σu

(ûn(f)− u(f))
L−→ N (0, 1) (A.23)

where

σ2
ℓ :=

1

(Var (f ∗(X,Z)))2

(
Σ11 + Σ22 +

(
MSE(fz)−MSE(f)

Var (f ∗(X,Z))

)2

Σ33 − 2Σ12

− 2
MSE(fz)−MSE(f)

Var (f ∗(X,Z))
(Σ23 − Σ13)

)

σ2
u :=

1

(Var (f ∗(X,Z)))2

(
Σ11 − 2

MSE(fz)

Var (f ∗(X,Z))
Σ13 +

MSE(fz)

(Var (f ∗(X,Z)))2
Σ33

)
.
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By Slutsky’s Theorem, we can replace σℓ and σu in (A.22) and (A.23) with their consistent
estimators sℓ and su defined in Algorithm 1, and the same results hold.

Note that

Ln =


0 if V̄ = 0,

0 if ℓ̂n(f)−
zα/2sℓ√

n
< 0,

ℓ̂n(f)−
zα/2sℓ√

n
else,

and since Ln ≤ S in either of the first two cases (since S ≥ 0 by definition), we have that

P (Ln ≤ S) ≥ P
(
ℓ̂n(f)−

zα/2sℓ√
n

≤ S

)
, (A.24)

where we say that the event {ℓ̂n(f) −
zα/2sℓ√

n
≤ S} does not occur when ℓ̂n(f) −

zα/2sℓ√
n

is

undefined (due to V̄ = 0). By the same argument,

P (Un ≥ S) ≥ P
(
ûn(f) +

zα/2su√
n

≥ S

)
. (A.25)

Thus, by (A.24) and (A.22),

lim inf
n→∞

P (Ln ≤ S) ≥ lim inf
n→∞

P
(
ℓ̂n(f)−

zα/2sℓ√
n

≤ S

)
≥ lim inf

n→∞
P
(
ℓ̂n(f)−

zα/2sℓ√
n

≤ ℓ(f)

)
= 1− α

2
,

and by (A.25) and (A.23),

lim inf
n→∞

P (Un ≤ S) ≥ lim inf
n→∞

P
(
ûn(f) +

zα/2su√
n

≥ S

)
≥ lim inf

n→∞
P
(
ûn(f) +

zα/2su√
n

≥ u(f)

)
= 1− α

2
.

A simple union bound gives us the final result:

lim inf
n→∞

P (Ln ≤ S ≤ Un) ≥ 1− α.

A.5 Proof of Theorem 2.4

Theorem. Under the same assumptions as in Theorem 2.3 and the additional assumption
that Var (f ∗(X,Z)) > 0, the bounds Ln and Un output by Algorithm 1 satisfy

Un − Ln≤
MSE(f)

Var (f ∗(X,Z))
+Op

(
n−1/2

)
.

Proof. Note that since V̄
p−→ Var (f ∗(X,Z)) > 0, P

(
V̄ = 0

)
→ 0. When V̄ > 0,

(Un − Ln)−
MSE(f)

Var (f ∗(X,Z))
≤
(
M̄ z

V̄
+

zα/2su√
n

)
−
(
M̄ z − M̄

V̄
−

zα/2sℓ√
n

)
− MSE(f)

Var (f ∗(X,Z))

=

(
M̄

V̄
− MSE(f)

Var (f ∗(X,Z))

)
+

zα/2(su + sℓ)√
n

. (A.26)
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The reason for the inequality in the first line is that we could have Ln = 0 or Un = 1, since
we clip the bounds. Using the intermediate results from the proof of Theorem 2.3 and our
assumption that Var (f ∗(X,Z)) > 0, we can apply the multivariate delta method to establish
that

√
n

(
M̄

V̄
− MSE(f)

Var (f ∗(X,Z))

)
L−→ N (0, σ2),

for some σ2 < ∞. This implies that the first term in (A.26) is Op(n
−1/2). Since su

p−→ σu

and sℓ
p−→ σℓ, su and sℓ are Op(1), meaning that the second term in (A.26) is also Op(n

−1/2).
This establishes the desired result.

A.6 Description of Hymod Model

Hymod is a conceptual rainfall-runoff model based on the probability-distributed soil storage
capacity principle (Sheikholeslami and Razavi, 2020). It simulates daily streamflow given
precipitation and potential evapotranspiration as forcing data, where both the inputs and
outputs are time series. The model consists of a soil moisture module and a routing mod-
ule composed of three linear quick flow reservoirs and one linear slow flow reservoir. The
outputted streamflow is given by the sum of quick and slow flow generation (Herman et al.,
2013).

Input Description Units Min Max
Sm maximum soil moisture mm 0 400
beta exponent in the soil moisture routine - 0 2
alfa partition coefficient - 0 1
Rs slow reservoir coefficient day−1 0 0.1
Rf fast reservoir coefficient day−1 0.1 1

Table 1: Hymod inputs (Pianosi and Wagener, 2016)
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A.7 Full CBM-Z Sensitivity Indices

Figure 4: 95% confidence intervals for all sensitivity indices for the CBM-Z model using
floodgate, the surrogate-based SPF estimator, and Panin (2021)’s bounds.
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