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Abstract

Research questions across a diverse array of fields are formulated as a Partial Con-
junction Hypothesis (PCH) test, which combines information across m base hypotheses
to determine whether some subset is non-null. However, standard methods for testing
a PCH can be highly conservative. In this paper, we introduce the conditional PCH
(cPCH) test, a new framework for testing a single PCH that directly corrects the con-
servativeness of standard approaches by conditioning on certain order statistics of the
base p-values. Under distributional assumptions commonly encountered in PCH test-
ing, the cPCH test produces a p-value that is nearly uniform. Through simulations, we
demonstrate that the cPCH test uniformly outperforms standard single PCH tests and
maintains Type I error control even under model misspecification, and can in certain
situations also be used to outperform state-of-the-art PCH multiple testing procedures.
Finally, we illustrate an application of the cPCH test on a replicability analysis of four
microarray studies.

Keywords: Composite null, Causal mediation analysis, Replicability analysis, Meta-analysis,
Multiple hypotheses testing

1 Introduction

1.1 Motivation

Partial Conjunction Hypothesis (PCH) tests are necessary to address important statistical
questions in a diverse array of fields. For example, in areas such as genomics (Liu et al., 2022;
Huang, 2019; Dai et al., 2020), psychology (Baron and Kenny, 1986), and social policy eval-
uation (Karmakar et al., 2021), researchers are interested in understanding complex causal
relationships between a cause and an effect. Methods such as causal mediation analysis and
causal factor analysis formulate questions about such relationships as the conjunction of links
in a causal graph, where each link in the graph represents a hypothesis relating an effect to an
outcome. The primary goal of these methods is to identify true causal relationships, which
requires procedures for testing whether the hypotheses representing the conjunction of cer-
tain links are individually non-null. Another major application area is replicability analysis,
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where the partial conjunction of hypotheses represents the corroboration of scientific results
across independent studies. In recent years, scientific replicability has become a major topic
of interest in the analysis of observational studies, where subtle biases in population, data
processing, and diagnostic measures can significantly influence conclusions. “Replicability
crises” have been observed across a wide range of domains, including genetic epidemiol-
ogy (NCI-NHGRI Working Group on Replication in Association Studies, 2007; Kraft et al.,
2009; Hirschhorn and Altshuler, 2002), economics (Camerer et al., 2016), psychology (Braver
et al., 2014), and medicine (Ioannidis, 2005), underscoring the need for replicability analysis
to convincingly validate scientific claims.

1.2 Problem Statement

Partial Conjunction Hypothesis (PCH) testing provides a statistical framework for evaluating
the partial conjunction of a set of m hypotheses. Formally, it tests whether or not at least r
out of m base hypotheses, H0,i, i = 1, ...,m, are individually non-null, i.e., letting r? be the
true number of non-null base hypotheses:

Definition 1 (Partial Conjunction Hypothesis (PCH)).

H
r/m
0 : r? < r

where r ∈ {2, 3, ...,m}. Hr/m
0 can equivalently be interpreted as stating that at least m−r+1

of the H0,i are true, and its complement as stating that at least r of the H0,i are false. For
example, in replicability analysis, where H0,i tests whether an effect was present in a study,

the rejection of H
2/m
0 provides explicit evidence for scientific replicability (i.e., that an effect

was present in two or more studies). In causal mediation and causal factor analysis, where

H0,i tests for the presence of a link in a causal chain, the rejection of H
m/m
0 provides explicit

evidence for a causal relationship between the beginning and end of the chain.

Notably, H
r/m
0 is composite, so the null space consists of r disjoint null configurations cor-

responding to r? = 0, ..., r − 1. For instance, in the r = m = 2 case, the null configurations
are:

H
2/2
0 =

{
Both H0,i are true (r? = 0), or

exactly one of H0,i is false (r? = 1).

In this paper, we consider the setting where the base hypotheses H0,i have independent base
p-values, p1, . . . , pm. Although we have multiple base null hypotheses (with corresponding
base p-values), this paper primarily focuses on the problem of testing a single PCH (at a

time), i.e., we aim to test H
r/m
0 for a single set of m base null hypotheses.

1.3 Background and Existing Work

1.3.1 Testing a Single PCH

Standard methods for testing a single PCH apply global null tests to the largest m− r + 1
base p-values. Letting p(1) ≤ ... ≤ p(m) be the sorted base p-values, the resulting PCH
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p-value, pr/m, is of the form

pr/m(p1, ..., pm) = g
(
p(r), ..., p(m)

)
,

where g : Rm−r+1 → R corresponds to the combining function of the global null test that
is used. These standard single PCH tests are generally referred to by the same name as
the global null test that they employ, with Bonferroni’s, Simes’, and Fisher’s global null
tests being the most common (Wang et al., 2021). For instance, the combining function
for Bonferron’s test is gB

(
p(r), ..., p(m)

)
= (m − r + 1)p(r), which we can recognize as the

standard Bonferroni correction applied to the m− r+ 1 p-values p(r), ..., p(m). When r = m,
Bonferroni’s, Simes’, and Fisher’s tests are all equivalent and specifically when r = m = 2,
they are collectively referred to as the Max-P test (Liu et al., 2022).

Intuitively, applying a global null test to the m− r + 1 “least promising” (i.e., largest) base

p-values tests H
r/m
0 because rejecting the global null test provides evidence that strictly

fewer than m− r+ 1 base hypotheses are null (equivalently, that at least r base hypotheses

are non-null) and therefore, H
r/m
0 should be rejected. Intuitively, PCH tests of this form are

valid because the largest base p-values stochastically dominate the Unif(0,1), so the resulting
PCH p-value will also stochastically dominate the Unif(0,1) (Benjamini and Heller, 2008).
Formally, Simes’ and Fisher’s tests are guaranteed to be valid when the individual base
p-values are independent while Bonferroni’s test is valid under any dependency structure.

Despite their widespread usage in various applied and methodological studies such as Heller
et al. (2007); Zuo et al. (2011); Rietveld et al. (2014); Karmakar and Small (2020); Karmakar
et al. (2021), standard single PCH tests are highly conservative even when the tests for the
individual base hypotheses are non-conservative (Benjamini and Heller, 2008; Zhang et al.,
2016; Liu et al., 2022). For example, under the global null (where all H0,i are true), even
when the base p-values are uniformly distributed under the null, p(r), ..., p(m) are highly
superuniform (i.e., P

(
p(i) ≤ t

)
� t for all i = r, ...,m). Thus, the resulting PCH p-value

will also be superuniform. The only null case where standard single PCH tests will produce
uniform p-values is when there are exactly r − 1 non-null base hypotheses each having
infinite signal strength, which we refer to as the least favorable null (LFN) case as it is

the parameter configuration in the null that maximizes the probability of rejecting H
r/m
0

(Benjamini and Heller, 2008; Dickhaus et al., 2021). Under this setting, p(r), ..., p(m) are
guaranteed to correspond perfectly with the true null base p-values (since the r − 1 non-
null base p-values will all be 0). Thus, as long as the null base p-values are uniformly
distributed and the global null test used is not conservative, the resulting PCH test will
produce uniformly distributed PCH p-values. However, the LFN case (and in particular the
infinite signal size of the non-nulls) is generally unrealistic in real-world data settings, and
any other null case constitutes a situation where standard methods would be conservative
to some degree.

This conservativeness is concerning primarily because it extends to the alternative space. For
example, in alternative configurations where the signal strengths associated with the non-
null base hypotheses are low, standard single PCH tests can have especially low power since
many of the p(r), ..., p(m) will likely correspond to null base p-values. Thus, the low power

3



of standard single PCH tests in applied settings is fundamentally linked to their conserva-
tiveness under the null. However, alternative configurations with low signals are especially
prevalent in applications, where effects are often subtle, such as genetic epidemiology (Sesia
et al., 2021; Wang et al., 2021). Therefore, a primary challenge in PCH testing research
has been to develop methods that correct the conservativeness of standard single PCH tests
under the null.

1.3.2 Adjusting for Conservativeness via Multiple Testing

Several works correct the conservativeness of standard single PCH tests by sharing informa-
tion across multiple PCH tests to infer which PCH’s are most likely to be under different null
configurations. Naturally, this approach can only be applied when there are multiple (ideally
very many) different PCH’s being tested at once. Importantly, the following methods cannot
be applied to testing a single PCH. Broadly, we can categorize these methods into two types:
empirical Bayes and filtering methods.

Empirical Bayes (EB) methods such as Heller and Yekutieli (2014); Huang (2019); Dai et al.
(2020); Dreyfuss et al. (2021); Liu et al. (2022) aim to predict the proportion of PCH’s
belonging to each null configuration, often adapting existing methods for estimating the
proportion of nulls in the multiple testing literature (Efron et al., 2001; Storey, 2002; Storey
et al., 2004; Jin and Cai, 2007; Efron, 2008). These approaches usually produce asymptot-
ically valid PCH p-values under certain regularity conditions. However, because they rely
on the consistency of their estimation method for their asymptotic validity guarantees, they
can experience high Type I Error inflation when the number of hypotheses is small or when
violations of regularity conditions make estimation unreliable.

Filtering methods filter out unpromising hypotheses to facilitate an analysis of the remaining
ones, which tend to be less conservative (Dickhaus et al., 2021; Wang et al., 2021). For
example, the AdaFilter method in Wang et al. (2021) uses a data-adaptive threshold based
on Bonferroni’s combining function to reduce the set of PCH’s to the ones closest to the
LFN case. Dickhaus et al. (2021) filters and re-scales PCH p-values based on a user-provided
threshold such that any multiple testing procedure like Benjamini–Hochberg (BH) can be
applied to the reduced set while controlling FDR on the entire set. These methods are highly
effective in settings where there is a large number of PCH’s being simultaneously tested and
the global null is expected to be the overwhelmingly dominant null configuration. In these
settings, most of the null PCH p-values will be highly conservative, thus allowing filtering
to effectively exclude unpromising hypotheses. However, outside of this particular, albeit
important, setting, the performance of these methods can suffer. For instance, we show that
in situations where the proportion of global nulls is small relative to other null configurations,
these filtering methods can have lower power than just using standard methods for single
PCH testing to compute individual PCH p-values and then applying Benjamini–Hochberg;
see Section 3.3.3 for details.

Overall, since multiple testing approaches to PCH testing must correct for both the multi-
plicity of the hypotheses being tested and the conservativeness of the individual p-values,
they tend to be tailored to certain multiple testing settings (i.e., when the global null is the
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primary null configuration) and can be less powerful outside of those settings. Alternatively,
a generic way to generate PCH multiple testing procedures would be to develop a powerful
and non-conservative single PCH test (as we do in this paper), and then the p-values from
such a test could be fed into any existing (non-PCH-specific) multiple testing procedure.
By leveraging the vast literature on multiple testing procedures, this generic PCH multiple
testing procedure has the potential to be powerfully applied in almost any setting.

1.4 Our Contributions

In this paper, we propose the conditional PCH (cPCH) test, a new approach to correcting
the conservativeness of a standard (single) PCH test by conditioning on a function of the
data; notably, cPCH applies directly to an individual PCH test and does not need there to
be multiple PCH tests at all. In the commonly encountered situation when the underlying
test statistics associated with each of the m hypotheses within a PCH test are independent
and Gaussian, we show that cPCH p-values are almost exactly uniform under any null
configuration, with small and quantifiable deviations between the realized Type I error and
the nominal level. We also prove that, analogous to standard single PCH tests, the cPCH
test is non-conservative under the LFN case. We demonstrate via simulation that the cPCH
test is empirically more powerful than standard single PCH tests, maintains Type I error
control even under model misspecification, and, in combination with different multiple testing
procedures, outperforms existing PCH multiple testing methods in certain regimes while
maintaining FDR control.

1.5 Outline

Section 2 provides the motivation and formal definition of the cPCH test and states our
key result: When the base test statistics associated with each of the m base hypotheses
are independent and Gaussian with unit-variance, the cPCH test produces p-values that are
almost exactly uniform under the null with minor and quantifiable deviations between the
Type I error and nominal level. Section 2.5 describes an algorithm for efficiently computing
cPCH p-values. Section 3 illustrates the performance of the cPCH test on various simulated
datasets for both single and PCH multiple testing and Section 4 provides a real data example.
Section 5 concludes.

1.6 Reproducibility

All code, along with a tutorial for its use, is provided at https://github.com/biyonka/cpch.

1.7 Notation

For a distribution Pθ in a parametric model {Pθ : θ ∈ Θ}, let Pθ denote a probability
taken with respect to Pθ. We write Φ and φ to denote the cumulative distribution function
(CDF) and probability density function (PDF) of the standard normal random variable,
respectively.
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2 Conditional PCH Testing

2.1 Preliminaries

Although we will ultimately argue that our method applies more broadly, we will begin by
assuming that each of the base null hypotheses H0,i tests whether a scalar parameter θi = 0,
and that the data for such a test can be summarized into a single unit-variance Gaussian
test statistic Ti with mean θi, for i = 1, ...,m:

H0,i : θi = 0 vs. H1,i : θi 6= 0, Ti ∼ N (θi, 1). (1)

As in the problem statement in Section 1.2, we assume the test statistics are independent
across i. Thus, the PCH is H

r/m
0 : θ ∈ Θ

r/m
0 , where Θ

r/m
0 = {θ ∈ Rm : ‖θ‖0 < r} is the

partial conjunction null space and ‖·‖0 is the `0 norm. Though it may seem constraining
to assume a parametric form of both the null and non-null base test statistic distributions,
this distributional assumption approximates a wide array of applications, as the data for the
base hypotheses are commonly summarized as asymptotically normal parameter estimators
such as maximum likelihood estimators, method of moments estimators, and most causal
estimators for average treatment effects (Heller et al., 2007; Rietveld et al., 2014; Zhang et al.,
2016; Barfield et al., 2017; Wang et al., 2021; Liu et al., 2022). The replicability analysis of
microarray studies presented in Section 4 provides a real data example that adheres to the
above setting according to Wang et al. (2021).

We introduce some key notation for this setting. Recall we originally ordered the base p-
values {pi}mi=1 as p(1) ≤ · · · ≤ p(m). Since we are in a two-sided testing setting, we will
analogously order the Ti by their magnitudes, i.e., we order {T(i)}mi=1 by |T(1)| ≤ ...|T(m)|
and let T(i:j) = (T(i), ..., T(j)) for i ≤ j. Note, however, that the indices are ordered in
reverse for the T(i) as they are for the p(i), e.g., the most significant and hence smallest
p-value p(1) corresponds to the largest-magnitude test statistic T(m). From now on, we also
present the combining functions of global null tests as functions of the base test statistics Ti
instead of the base p-values pi. In this new formulation, a PCH test with some test-statistic-
combining function f will reject H

r/m
0 when f(T(1:m−r+1)) ≥ cα where cα is the rejection

threshold. For instance, the Bonferroni test would have fB(T(1:m−r+1)) = |T(m−r+1)| and

cα = Φ−1
(

1− α
2(m−r+1)

)
.

2.2 Motivation and Intuition

Given a test statistic f
(
T(1:m−r+1)

)
, the primary challenge of PCH testing is to specify a

rejection threshold cα such that the test which rejects when f
(
T(1:m−r+1)

)
> cα is valid, in

that it controls Type I error at the desired level α, and powerful, in that it rejects as often as
possible when the PCH is false. In particular, our design objective is to generate a test that
produces uniform PCH p-values pr/m under any null configuration, i.e., Pθ(pr/m ≤ α) = α

for all θ ∈ Θ
r/m
0 , since conservativeness in the p-value distribution at some point in the null

space will imply a loss of power at nearby points in the alternative space.
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A generic way to generate new PCH tests and further our understanding of existing methods
in comparison is to first consider an oracle test that has the desired properties (in our case,
one that produces uniform p-values under every null) and admits a plug-in version with
very similar statistical behavior. For illustrative purposes, we focus on the r = m = 2
case where the test statistic for all standard combining functions (from Fisher’s, Simes’, and
Bonferroni’s global null tests) reduces to f(T(1)) = |T(1)|. By the symmetry of the problem
(i.e., the rejection threshold is invariant to relabelling of the indices of T1 and T2) it is

sufficient to represent all θ ∈ Θ
2/2
0 by θ(2), where, for illustrative purposes in this section, we

will assume that θ(2) ≥ 0 (recall θ(1) = 0 by definition of Θ
2/2
0 ). A natural choice of extra

information to provide to our oracle is θ(2). So, we define the rejection threshold of our PCH
Oracle test cα(θ(2)) as the value satisfying

Pθ(2)
(∣∣T(1)

∣∣ > cα
(
θ(2)

))
= α,

i.e., cα(θ(2)) is the 1−α quantile of |T(1)|’s distribution when {θ1, θ2} = {0, θ(2)}. By definition

of cα(θ(2)), this oracle test produces uniform PCH p-values for every θ ∈ Θ
2/2
0 , as desired.

Since PCH tests do not have access to the true θ(2) in practice, they must use a re-
jection threshold that does not require knowledge of the true θ(2). One valid choice is
cα = supθ(2) cα

(
θ(2)

)
= cα(∞), which is the rejection threshold of the Max-P test: cα(∞) =

Φ−1 (1− α/2). Thus, we can think of the Max-P test as a plug-in version of the oracle test
where θ̂(2) =∞ is a (worst-case) plug-in estimator of θ(2).

At first glance, the choice of θ̂(2) = arg supθ(2) cα
(
θ(2)

)
=∞ seems to be the primary cause for

the conservativeness of standard methods (recall all standard methods reduce to the Max-P
test when r = m = 2). A promising possibility for resolving the conservativeness of the
Max-P test is to choose a different estimator for θ(2) that is likely to be closer to the true

θ(2). A natural choice would be θ̂(2) = T(2), the maximum likelihood estimator (MLE) of
θ(2). This choice defines a new PCH test, which we call the unconditional (plug-in) PCH
(uPCH) test, with rejection threshold cα

(
T(2)

)
, the 1−α quantile of |T(1)|’s distribution when

θ(2) = T(2). Though this choice of plug-in estimator does not come with any obvious Type I
error guarantees, we find that the Type I error inflation of the uPCH test is remarkably small,
as shown in Figure 1a. However, it is still highly conservative near the global null and, like
the Max-P test, this conservativeness extends to the alternative space as well; see Figure 1b
for details. These observations lead to our primary motivating insight for conditional PCH
(cPCH) testing:

The conservativeness of existing methods is not primarily caused by the choice of the estima-
tor for the unknown parameters, but rather the sensitivity of the test statistic’s distribution
to the unknown parameters.

In particular, if |T(1)|’s distribution did not depend very much on θ(2), the uPCH test, which
uses a reasonable plug-in estimator for θ(2), should have similar Type I error to the oracle
test which uses θ(2)’s exact value and produces exactly uniform p-values under every null θ.

One way to make the distribution of a test statistic less sensitive to unknown parameters
is by conditioning on a function of the data h(T ). For example, an extreme case would be

7



(a) Type I Error (b) Power

Figure 1: Each point represents the proportion of Max-P, uPCH, and cPCH p-values for
testing H

2/2
0 below α over 100, 000 independent replicates of the data Ti ∼ N (θi, 1) where

T1 and T2 are independent and {θ1, θ2} = {0, θ(2)}. Error bars represent 2 standard errors.

if the function of the data we conditioned on were sufficient for θ. Then, the conditional
distribution of the test statistic would not depend on the unknown parameters at all.

Thus, we propose a new PCH test based on the distribution of the test statistic |T(1)| condi-
tional on a function of the data. In the r = m = 2 case, a natural choice for conditioning is
h(T ) = T(2), since it is all that remains after precluding conditioning on T(1) which uniquely
determines the value of the test statistic f(T(1)). So, we define the new conditional PCH
(cPCH) Oracle test by the rejection threshold cα(θ(2), T(2)) satisfying

Pθ(2)
(
|T(1)| > cα

(
θ(2), T(2)

) ∣∣ T(2)

)
= α,

i.e., cα
(
θ(2), T(2)

)
is the 1 − α quantile of the conditional distribution of |T(1)| | T(2) when{

θ1, θ2} = {0, θ(2)

}
. As with the PCH Oracle test defined above, the cPCH Oracle test

produces exactly uniform p-values under every null θ by construction. From the cPCH Oracle
test, we now define a new plug-in test in the hopes that it will resolve the conservativeness
of the approaches described above. We call this test the cPCH test, which uses the MLE
θ̂(2) = T(2) as an estimator for θ(2) in the cPCH Oracle test’s rejection cutoff.

In Figure 1a, we compare the Type I error of the Max-P, uPCH, and cPCH tests in the
r = m = 2 case, and we see that the cPCH test has only small deviations between the
realized Type I error and the nominal level α across the entire null space. Since the cPCH
Oracle test produces uniform p-values under the null by construction, the nearly-α Type I
error of the cPCH test indicates that it is matching its oracle under the null and is hence less
sensitive to the estimation of θ(2), thus achieving our original design objective. Importantly,
in Figure 1b we see that under the alternative, the cPCH test is more powerful than the
Max-P and uPCH tests in low signal settings (i.e., when θ1 and θ2 are both small) while all
tests have similar power in high signal settings.
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Additionally, like the uPCH test, the Type I error inflation of the cPCH test is remarkably
small. We show in Section 2.4 that across various m and r, the maximum Type I error
inflation of the cPCH test is quantifiable and small. Since it is possible to quantify the
Type I error inflation of the cPCH test, one could always adjust the significance level so that
the true Type I error is bounded by α. This adjustment is likely not necessary in practice,
as we show that the cPCH test empirically controls the Type I error, even under model
misspecification; see Section 3.2 for more details. Thus, via conditioning, we have developed
a framework for PCH testing that is more robust to plug-in estimation and, as we show
further in Section 3.1, is empirically more powerful than existing methods for single PCH
testing.

2.3 Formal Definition

We now formally define the cPCH test for general m ≥ 2. Analogously to the previous sec-
tion, given some combining function f : Rm−r+1 → R, we will specify the rejection threshold
of the cPCH test for m ≥ 2 based on the quantiles of the conditional distribution of our
test statistic f

(
T(1:m−r+1)

)
| T(m−r+2:m) under H

r/m
0 , where recall that H

r/m
0 : θ ∈ Θ

r/m
0 =

{θ ∈ Rm : ‖θ‖0 < r}.We condition on T(m−r+2:m) because, intuitively, we want to condition
on as much information as possible to make the Type I error as insensitive as possible to
the error in the estimation of θ(m−r+2:m). Hence, we define cα(θ(m−r+2:m),T(m−r+2:m)) as the
1 − α quantile of the distribution of f

(
T(1:m−r+1)

)
| T(m−r+2:m) for T ∼ N (θ, Im) where

θ(1:m−r+1) = 0, θ(m−r+2:m) comes from the first argument to cα, and Im is the m×m identity
matrix. Note cα

(
θ(m−r+2:m),T(m−r+2:m)

)
is permutation invariant to the elements of the un-

derlying θ, i.e., the resulting quantile would be the same if T ∼ N (σ(θ), Im) where σ(θ) is

some permutation of the elements of θ. Therefore, it is sufficient to represent any θ ∈ Θ
r/m
0

by θ(m−r+2:m).

Definition 2 (Conditional PCH (cPCH) test). The level-α cPCH test rejects H
r/m
0 when

f
(
T(1:m−r+1)

)
> cα

(
T(m−r+2:m),T(m−r+2:m)

)
.

In the definition above, T(m−r+2:m) in the first argument of cα serves as the estimator
for θ(m−r+2:m), while the same quantity in the second argument denotes what is condi-
tioned on. Analogous to our construction of the cPCH test when r = m = 2 in Sec-
tion 2.2, T(m−r+2:m) is the MLE for θ(m−r+2:m). The cPCH Oracle test has rejection threshold
cα
(
θ(m−r+2:m),T(m−r+2:m)

)
and the PCH Oracle test has rejection threshold cα

(
θ(m−r+2:m)

)
,

which we define as the 1−α quantile of the distribution of f
(
T(1:m−r+1)

)
where T ∼ N (θ, Im)

and θ is comprised of θ(m−r+2:m) with the remaining elements θ(1:m−r+1) = 0.

For all results in this paper, we focus on the combining functions of the Bonferroni, Simes,
and Fisher global null tests. Note, however, that the definition of the cPCH test is general, as
it allows the analyst to in principle specify any f of her choice. Our code allows the analyst
to specify f and provides implementations of the cPCH test using Bonferroni’s, Simes’, and
Fisher’s combining functions as used in this paper.
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2.4 Validity of the cPCH Test

2.4.1 Results under the LFN Case

We first discuss the behavior of the cPCH test under the LFN case, which we introduced in
Section 1.3.1 as the setting where, informally, there are exactly r − 1 θi’s with |θi| equaling
infinity. In this section, we formalize this initial description and prove a validity result for
the cPCH test under the LFN case.

First, we provide some intuition for the LFN case. As discussed in Section 2.1, the data
for each base hypothesis is commonly summarized as an asymptotically normal parameter
estimator such as a sample mean or ordinary least squares coefficient. Under our assumed
setting in Section 2.1, we expect the non-null Ti’s under fixed alternatives to approach infinity
in magnitude as their underlying sample size approaches infinity. For example, if each base
hypothesis test reports a sample mean of n i.i.d. observations each approximated by a
N (µi, 1) distribution, then the standard z-test statistic is Ti ∼ N (θi, 1) where θi =

√
nµi.

Therefore, as n approaches infinity, the non-null |θi|’s will also approach infinity, and thus,
so will their corresponding |Ti|’s.

When the base test statistics are independent and the null base p-values are uniformly
distributed, the standard single PCH tests are exact tests under the LFN case.1 We show
that the cPCH test exhibits a similar property under the LFN case. First, we formalize our
initial description of the LFN case by defining an LFN sequence:

Definition 3 (LFN sequence). An LFN sequence (θ(n)) is a sequence in Θ
r/m
0 such that∣∣∣θ(n)

(j)

∣∣∣→∞ for j = m− r + 2, ...,m as n→∞.

Let T (n) denote a test statistic vector, with the superscript (n) now allowing us to vary

T (n)’s distribution. Let ϕcPCH
α

(
T (n)

)
:= 1

{
f
(
T

(n)
(1:m−r+1)

)
> cα

(
T

(n)
(m−r+2:m),T

(n)
(m−r+2:m)

)}
and ϕPCHOrac

α

(
T (n)

)
:= 1

{
f
(
T

(n)
(1:m−r+1)

)
> cα

(
θ

(n)
(m−r+2:m)

)}
denote the decisions made by

the cPCH test and PCH Oracle test, respectively.

Theorem 1 (Exactness of the cPCH test under the LFN case). Assume
(
θ(n)

)
is a LFN

sequence and that the test statistic vector T (n) ∼ N (θ(n), Im). Assume f : Rm−r+1 → R is
permutation invariant, continuously differentiable, and has ∇f 6= 0 except on a set whose
closure has measure zero. Then, for any α ∈ (0, 1),

lim
n→∞

Pθ(n)

(
ϕcPCH
α

(
T (n)

)
= ϕPCHOrac

α

(
T (n)

))
= 1.

In particular, the above implies that the cPCH test’s limiting Type I error under any LFN
sequence is exactly α.

1This is true as stated for the Fisher’s and Simes’ single PCH tests. For Bonferroni’s, we need the
additional condition that r = m. Otherwise, Bonferroni’s test is slightly conservative because we assume
independence of the Ti while Bonferroni’s test allows for arbitrary dependence.
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Theorem 1 shows not only that the cPCH test achieves exactly the nominal Type I error rate
in the LFN case, but that it in fact behaves identically to the PCH Oracle test in such a case.
Note as well that Fisher, Bonferroni, and Simes combining functions satisfy the conditions
on f specified in the theorem statement. The proof is provided in Appendix A.

2.4.2 Approximate Validity

As no real testing scenario falls exactly into the LFN case, the utility of a PCH test is
characterized primarily by its behavior when the non-null θi’s are finite. We find that, under
the setting in Section 2.1, for a fixed m, r, and α, the cPCH test has small and quantifiable
Type I error inflation. Additionally, we find that for a fixed m and r, the cPCH test produces
nearly uniform p-values under the null. Thus, we call the cPCH test “approximately valid
and non-conservative”.

Our characterization of the cPCH test’s validity for finite θi relies fundamentally on the fact
that, for a given choice of m and r, we can estimate the cPCH p-value distribution for a
given θ ∈ Θ

r/m
0 with high accuracy via Monte Carlo sampling. Specifically, given a θ ∈ Θ

r/m
0 ,

we generate samples T̃ (k) i.i.d∼ N (θ, 1), k = 1, ..., N and compute the cPCH p-value for each
sample to empirically estimate the distribution of the cPCH p-value under θ. Performing
this sampling procedure across a sufficiently fine grid of Θ

r/m
0 with many replicates N allows

us to obtain highly accurate estimates of the p-value distribution under the null for the
desired m and r. Given a fixed α, we can also use the Monte Carlo samples to obtain highly
accurate estimates of the Type I error for each θ ∈ Θ

r/m
0 by computing the proportion of

the sampled cPCH p-values at θ ∈ Θ
r/m
0 that are below α.

We pause to highlight that our approach in this section is somewhat different from a usual
simulation study, which would typically explore a small (but hopefully at least somewhat
representative) subset of all possible data-generating scenarios. In contrast, we provide an
exhaustive characterization of the cPCH p-value distribution at effectively every null θ for
realistic values of m and r. Such an exhaustive search is made possible by the small dimension
of the null space for most common PCH testing scenarios, such as causal mediation analysis,
where m = 2, and replicability analysis, where m is often ≤ 4 (Bogomolov and Heller, 2013;
Heller and Yekutieli, 2014; Wang et al., 2021), and hence we focus on settings with m ≤ 4.
For all analyses in this section, we fix α = 0.05. Thus, the following results can be interpreted
as essentially a computational proof that, for the configurations of m and r tested, the cPCH
test produces approximately uniform p-values under the null and that, for α = 0.05, the Type
I error inflation of the cPCH test is small. We expect these results to generalize to larger m
and different choices of α. Though our results assume the setting of Section 2.1 where each
Ti are single, independent unit-variance Gaussians, our simulations in Section 3.2 suggest
that the following results still hold under other distributional assumptions for the base test
statistics.

We first quantify the closeness of the cPCH p-value distribution under the null to the
Unif[0, 1] distribution through various metrics of interest. To visually depict results, we

focus on the r = m = 2 and m = 3, r = 2 cases since any θ ∈ Θ
2/2
0 ∪Θ

2/3
0 can be represented

by a single scalar θ(m). Results for r = m = 3 are provided in Appendix C.2.3.
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First, we compute the quantile-quantile plots between the empirical cPCH p-value density
(estimated using the Monte Carlo sampling scheme described above) for various θ ∈ Θ

r/m
0

and the Unif[0, 1] density. As shown in Figure 2, the density of cPCH p-values closely

matches that of a Unif[0, 1] distribution over a fine grid of θ ∈ Θ
r/m
0 for any choice of

combining function (Bonferroni, Simes, or Fisher).

Figure 2: Quantile-quantile plot of the empirical cPCH p-value density under various θ ∈
Θ
r/m
0 compared with the theoretical Unif[0, 1] distribution. Recall that when r = m = 2,

Bonferroni’s, Simes’, and Fisher’s combining functions are all equivalent. Each line represents
the matched quantiles of the Unif[0, 1] density (x-coordinate) and the empirical cPCH p-value
density for a given θ(m) (y-coordinate), estimated using n = 10, 000 independent replicates
for the Monte Carlo sampling scheme described in Section 2.4.2.

Next, we quantify the magnitude of the deviations between the null cPCH p-value distribu-
tions and the Unif[0, 1] distribution by computing the Kolmogorov–Smirnov (K–S) distances

between the empirical CDF of the cPCH p-values for various θ ∈ Θ
r/m
0 (estimated using the

Monte Carlo sampling scheme described above) and the CDF of the Unif[0, 1] distribution.
As shown in Figure 3, we see that the K–S distances between the cPCH null p-value distribu-
tions and the Unif[0, 1] distribution are small, as expected based on the results in Figure 2.
The maximum K–S distance for any choice of combining function, m, and r occurs when θ(m)

is approximately between 1 and 3, with smaller deviations occurring under the global null,
i.e., θ(m) = 0. Comparing Figure 3 for r = m = 2 with the corresponding Type I error plot
for r = m = 2 (Figure 1a), we see that the deviation at the global null occurs because the
cPCH test is slightly conservative under the global null, though far less so than its classical
counterpart, the Max-P test. The deviations when θ(m) is approximately between 1 and 3
occur due to the slight Type I error inflation of the cPCH test in this region. Note that the
m = 3, r = 2 setting exhibits the same pattern of deviations as in the r = m = 2 setting,
and we expect a similar pattern (very slight conservativeness near the global null and slight
anticonservativeness when the non-null θi’s are between 1 and 3) to generalize to other m
and r.

We also provide an approach to estimating the maximum Type I error inflation of the cPCH
test for any m, r, and α via stochastic gradient descent (SGD) and show that the estimated
maximum Type I error inflation of the cPCH test is generally small for various 2 ≤ m ≤ 4
and 2 ≤ r ≤ m when α = 0.05. To apply SGD to the Type I error of the cPCH test, we
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Figure 3: The K–S distances between the empirically estimated CDF of cPCH p-values
and the Unif[0, 1] CDF for various θ ∈ Θ

r/m
0 . Each point represents the K–S distance

between the Unif[0, 1] CDF and the empirically estimated cPCH p-value CDF for a given
θ(m) using n = 10, 000 independent replicates for the Monte Carlo sampling scheme described
in Section 2.4.2. To provide a baseline for comparison, the red dotted line represents the
average K–S distance between the empirical CDF of the Unif[0, 1] distribution estimated
over 10, 000 independent replicates and the theoretical Unif[0, 1] CDF.

write the Type I error as a function of θ:

E(θ) = Pθ
(
f(T(1:m−r+1)) > cα

(
T(m−r+2:m),T(m−r+2:m)

))
, θ ∈ Θ

r/m
0 . (2)

In the above notation, we suppress the Type I error’s dependence on α and the combining
function f for ease of presentation. It is of interest to quantify max

θ∈Θ
r/m
0

E(θ) relative to

α. Though E(θ) does not admit an analytical form, we can estimate the gradient of E(θ)
empirically via the Monte Carlo sampling described above, then use SGD to estimate the
maximum Type I error as −min

θ∈Θ
r/m
0
−E(θ). By the symmetry of the testing problem, we

can conduct the SGD algorithm to search over the subset of Θ
r/m
0 where the non-zero means

are all positive.

As suggested by Figure 1a, −E(θ) is not a convex function of θ. To justify our use of SGD
in this non-convex setting, we first note that when r = m = 2, −E(θ) appears to be smooth
and quasi–convex. For continuously differentiable, quasi-convex functions, gradient descent
will converge to a stationary point (Kiwiel and Murty, 1996). Since the Type I error curve
appears to have a single stationary point occurring at the global minimum (where θ(2) ≈ 2),
if the SGD algorithm converges to a finite solution, that solution is likely close to the global
minimum (Patel and Zhang, 2021). For r = m = 2, we find that across multiple, independent
initializations, the SGD algorithm consistently converges to solutions where θ(2) ≈ 2, which
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is consistent with the actual location of the maximum Type I error of the cPCH test for
r = m = 2.

As discussed with the K–S distance results, we see evidence that the behavior of the cPCH
test for r = m = 2 generalizes to different m and r (Figure 3). Therefore, we expect that,
for any m and r, the Type I error will also be quasi-convex and the maximum Type I error
will occur when θ(j) ≈ 2 for all j = m− r+ 2, ...,m. In fact, for m = 3, 4, we found that the
SGD algorithm consistently converges to solutions where θ(j) ≈ 2 for all j = m− r+2, ...,m,
thus supporting our claim. See Appendix B.2 for further details on the SGD algorithm.

The maximum Type I error inflation estimated via SGD is overall small for various choices
of 2 ≤ m ≤ 4 and 2 ≤ r ≤ m at α = 0.05; see Table 1 for details. If desired, the analyst
could also use the SGD algorithm to determine how much to lower the α used by the cPCH
test to achieve their desired nominal α Type I error.

cPCH-
Bonferroni

cPCH-
Fisher

cPCH-
Simes

m = 2 r = 2 0.060 — —

m = 3
r = 2 0.057 0.058 0.059
r = 3 0.053 0.053 0.053

m = 4

r = 2 0.058 0.057 0.059
r = 3 0.057 0.058 0.060
r = 4 0.062 0.062 0.062

Table 1: Maximum Type I error of the cPCH test computed from the SGD algorithm detailed
in Section B.2. All standard errors are below 0.0015 where standard errors are calculated
over many independent replicates of the cPCH p-value (N = 10, 000) at the θ∗ ∈ Θ

r/m
0 for

which the SGD algorithm terminated.

2.5 Computing cPCH p-values

Given the observed f(T(1:m−r+1)) = fobs, the cPCH p-value can be written as:

Pθ̂
(
f(T(1:m−r+1)) ≥ fobs | T(m−r+2:m)

)
where θ̂ is comprised ofm−r+1 zeroes and the elements of T(m−r+2:m). Thus, θ̂ is a shorthand
for the MLE of θ(m−r+2:m) as in Definition 2. Because the value of Pθ̂

(
f(T(1:m−r+1)) ≥ fobs

∣∣ T(m−r+2:m)

)
is invariant to re-indexing of the elements of θ̂, throughout this paper, we default to θ̂ =(
0, ..., 0, T(m−r+2), ..., T(m)

)
.

Computing this probability exactly requires us to derive the density of T(1:m−r+1) | T(m−r+2:m)

where T(1:m−r+1),T(m−r+2:m) are order statistics of independent but non-identically distributed
(i.n.i.d.) random variables. Though the conditional density functions of order statistics
of i.n.i.d. random variables has been studied in previous works (Bapat and Beg, 1989;
Ozbey et al., 2019), calculating the conditional densities based on the techniques in such

14



works would be computationally prohibitive as it would involve enumerating all m! pos-
sible permutations of the order statistics. Alternatively, if we can generate samples from
f
(
T(1:m−r+1)

)
| T(m−r+2:m), we can estimate this conditional distribution by taking many

independent samples and computing the empirical distribution. Thus, even if the analytic
form of the conditional density is intractable, we can compute cPCH p-values with high
accuracy as long as we can efficiently sample from the conditional density.

In the following, we describe our strategy for the above sampling problem. First, we note
that when r = m = 2, we can derive the analytic form of the conditional density T(1) | T(2),
thus allowing us to obtain exact cPCH p-values without sampling; see Appendix B.1.1 for
details. When m > 2, we develop a new, efficient procedure for sampling from f

(
T(1:m−r+1)

)
|

T(m−r+2:m). On a high level, our approach involves conditioning on extra events about which
of the T1, ..., Tm correspond to the order statistics T(1:m−r+1) and T(m−r+2:m). By doing so, we
can express the conditional density of f

(
T(1:m−r+1)

)
| T(m−r+2:m) as a mixture distribution

such that

• the involved mixture weights can be computed analytically;

• the mixture components can be estimated by sampling from rather simple probability
distributions.

To formally describe how we condition on these extra events, we denote by S the set of
all possible ways to observe some unordered set of the Ti’s corresponding to the entries
of T(1:m−r+1) and some ordered set of the remaining Tj’s corresponding to the entries of
T(m−r+2:m). For example, when m = 3, r = 2, we have

S = {({T1, T2}, T3), ({T2, T3}, T1), ({T1, T3}, T2)}

where the inner set corresponds to {T(1), T(2)} and the remaining term corresponds to T(3).
Here we pause to highlight a fact: the cardinality of S is m!

(m−r+1)!
, which also equals the

number of mixture components. Although in general the cardinality of S grows exponentially
in m, when r is small, such as when r = 2 for replicability analysis, the complexity of m!

(m−r+1)!

is a linear or a low-order polynomial in m, e.g., m!
(m−2+1)!

= O(m). Additionally, m is often ≤ 4

in many common PCH testing scenarios (Bogomolov and Heller, 2013; Heller and Yekutieli,
2014; Wang et al., 2021), so the number of mixture components to compute tends to be

reasonably small. For each term S` from the set S, for ` ∈
{

1, . . . , m!
(m−r+1)!

}
, we define the

event
B` :=

{
S` = ({T(1), ..., T(m−r+1)},T(m−r+2:m))

}
.

For example, in the m = 3, r = 2 case above, B1 =
{

({T1, T2}, T3) = ({T(1), T(2)}, T(3))
}

.
Now, we express the conditional distribution of f(T(1:m−r+1)) | T(m−r+2:m) in the following
mixture form:

Pθ̂
(
f(T(1:m−r+1)) ≥ fobs

∣∣ T(m−r+2:m)

)
=

m!
(m−r+1)!∑
`=1

Pθ̂
(
B`

∣∣ T(m−r+2:m)

)
Pθ̂
(
f(T(1:m−r+1)) ≥ fobs

∣∣ B`,T(m−r+2:m)

)
.

The computational details of our strategy can be summarized in two steps:
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1. We derive the analytic form of the mixture weights Pθ̂
(
B`

∣∣ T(m−r+2:m)

)
, which can be

expressed using only evaluations of the standard normal cumulative distribution Φ and
density φ;

2. We develop a method for sampling from the distribution of f
(
T(1:m−r+1)

)
| B`,T(m−r+2:m)

which relies solely on sampling from truncated-Normal distributions.

Derivations and further details for the above two steps can be found in Appendix B.1.

Given N independent copies
{
X

(k)
`

}N
k=1

from the conditional distribution of f
(
T(1:m−r+1)

)
|

B`,T(m−r+2:m) for T ∼ N (θ̂, Im), we estimate Pθ̂
(
f(T(1:m−r+1)) ≥ fobs

∣∣ B`,T(m−r+2:m)

)
as:

g

(
fobs,

{
X

(k)
`

}N
k=1

)
:=

1

N + 1

(
1 +

N∑
k=1

1

{
X

(k)
` ≥ fobs

})
,

where the “+1” in the numerator and denominator above is standard for Monte Carlo p-

values; see, e.g., Ernst (2004) for details. In the above notation, we suppress g

(
fobs,

{
X

(k)
`

}N
k=1

)
’s

dependence on θ̂ for ease of presentation. Taking N large, we can estimate

Pθ̂
(
f(T(1:m−r+1)) ≥ fobs

∣∣ B`,T(m−r+2:m)

)
with high accuracy. Therefore, we compute the

cPCH p-value as:

p
r/m
cPCH(T ) :=

m!
(m−r+1)!∑
`=1

Pθ̂
(
B`

∣∣ T(m−r+2:m)

)
g

(
fobs,

{
X

(k)
`

}N
k=1

)
.

Note that the smallest p
r/m
cPCH(T ) can be is 1

N+1
. In multiple testing settings where we have

M cPCH p-values, many FDR controlling procedures compare p-values to thresholds on the
order of α/M . Therefore, in multiple testing settings, N must be set large enough to ensure
that cPCH p-values can attain values below these thresholds to make any discoveries. Thus,

computing g

(
fobs,

{
X

(k)
`

}N
k=1

)
is the main computational component of calculating cPCH

p-values; however, since it is possible to sample efficiently from a truncated Normal distri-
bution, it is computationally feasible to set N very large. See Figure 13 of Appendix C.2.2
for further details on computation time.

Importantly, our sampling scheme does not rely on any specific properties of the normal
distribution; the only assumption necessary is that the base test statistics are independent.
Though we have generally assumed that the Ti are normally distributed, we can compute
cPCH p-values assuming the base test statistics are distributed under any one-parameter
location family, such as a t-distribution with fixed degrees of freedom. Our code contains
implementations of the cPCH for both normal and t-distributed base test statistics.
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3 Simulations

3.1 Single PCH Testing

In this section, we empirically evaluate the power and Type I error of the cPCH test in
comparison with existing approaches (Bonferroni’s, Simes’, and Fisher’s tests) and the cPCH
Oracle test presented in Section 2.2. Recall, we define r? as the true number of non-null
hypotheses. We generate data by sampling T independently from the model:

Th
i.i.d.∼ N (θ, 1), h = 1, ..., r?, Tl

i.i.d.∼ N (0, 1), l = r? + 1, ...,m.

We generate p-values for testing H
r/m
0 using the cPCH test (N = 10, 000), the cPCH Oracle

test (N = 10, 000), and the standard PCH tests (Fisher, Simes, and Bonferroni). As shown
in Figure 4, for m = 4, the cPCH test has nearly identical power to the cPCH Oracle test and
is uniformly more powerful than the standard single PCH tests. Figure 8 in Appendix C.2.1,
the analogous plot for null values of r?, shows that the cPCH test controls Type I error for all
null configurations and is far less conservative under the null than the standard single PCH
tests. We perform this simulation for various m and find similar results; see Appendix C.2.2
for further details. Additionally, we find that the computation time of the cPCH test is
reasonable. For N = 10, 000, the average computation time of a single cPCH p-value is
< 30 milliseconds for any 2 ≤ m ≤ 4 and 2 ≤ r ≤ m; for r = m = 2, the computation
time is ≈ 1 millisecond since we are able to compute the cPCH p-value in this case without
sampling (and hence, there is no N). See Figure 13 in Appendix C.2.2 for further details on
computation time.

3.2 Robustness to Model Misspecification

As the cPCH test assumes a known model for the base test statistics, it is important to
evaluate its robustness to model misspecification. Since we can compute cPCH p-values
for T ’s distributed under any one-parameter location family, we can assess the performance
of the cPCH test (which assumes T is normally distributed) when T is generated from a
different one-parameter location family, such as the t-distribution with a fixed scale and
degrees of freedom. Specifically, let t(θ, 1, ν) be the generalized t-distribution with centrality
parameter θ, scale 1, and degrees-of-freedom (DOF) ν. Let Ψ be the CDF of the t(0, 1, ν)
distribution. We generate data by sampling T independently from the model:

Th
i.i.d.∼ t(θ, 1, ν), h = 1, ..., r?, Tl

i.i.d.∼ t(0, 1, ν), l = r? + 1, ...,m.

The (correctly specified) cPCH p-value (N = 10, 000) for testing H
r/m
0 is computed from T

where we use a t-distribution in the computation procedure described in Section 2.5. We then
convert each base test statistic into its corresponding base p-value pi = 2(1 − Ψ(|Ti|), i =
1, ...,m and produce the test statistics Wi = Φ−1(1 − pi

2
), from which we compute the

(misspecified) cPCH p-value (N = 10, 000) using a normal distribution in the computation
procedure. This simulation emulates the situation in which the analyst only views the base
p-values p1, ..., pm and incorrectly assumes that the underlying base test statistics follow a
normal distribution.
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Figure 4: Power of the cPCH test, cPCH Oracle, and standard single PCH tests across
all alternative cases (r? ≥ r) for testing H

r/4
0 at nominal level α = 0.05 (dotted grey line)

for m = 4. Each point represents the proportion of cPCH p-values below α over 5000
independent replicates of the data generating procedure described in Section 3.1 for a given
(r?, r, θ). Error bars depict ±2 standard errors.

Figure 5 shows that the cPCH test remains powerful and maintains Type I error control
for most null configurations under model misspecification, even in some settings where the
base test statistics have Cauchy distribution (ν = 1). Notably, the cPCH test under model
misspecification maintains Type I error control for all null configurations when ν ≥ 5. Ad-
ditionally, the cPCH test which is properly specified (i.e., the p-values are computed using
the t-distribution) controls Type I error for all ν ≥ 5. In most applied settings, the degrees
of freedom of a t-distributed base test statistic reflect the underlying sample size used to
compute the base test statistic. Thus, excluding settings where the sample size is extremely
small such that ν < 5, we expect the cPCH test to be robust to model misspecification.

3.3 PCH Multiple Testing

Much of the existing literature on PCH testing addresses the conservativeness of standard
PCH testing by sharing information across multiple PCH tests. Although the main focus of
this paper is on resolving the conservativeness of standard PCH testing methods to improve
the power for testing a single PCH, we include simulations here to show how cPCH testing
can be used for PCH multiple testing and, in some cases, improves on existing PCH multiple
testing procedures.
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Figure 5: Power and Type I error of the properly specified (t-distributional assumption on T )
and the misspecified (normal distributional assumption on T ) cPCH tests at level α = 0.05
(dotted grey line). Each point represents the proportion of cPCH p-values below α over 5000
independent replicates of the data generating procedure described in Section 3.2 for a given
(r?, r, ν) with m = 3 and θ = 4. Error bars depict ±2 standard errors.

3.3.1 An Overview of Methods Under Comparison

In this section, we compare the performance of the cPCH test with various state-of-the-art
approaches for PCH multiple testing. From now on, we assume there are M PCH’s being
simultaneously tested. We denote Tij and pij as the ith base test statistic and p-value,
respectively, for the jth PCH being tested, i = 1, ...,m, j = 1, ...,M . We focus on three
FDR controlling procedures: Benjamini–Hochberg (BH) (Benjamini and Hochberg, 1995),
Storey’s (Storey et al., 2004), and AdaPT–GMM (Chao and Fithian, 2021), a covariate-
assisted multiple testing procedure. Notably, cPCH used in combination with AdaPT–GMM
provides an approach for PCH multiple testing with covariates, a setting largely unaddressed
by the PCH multiple testing literature.

As discussed in Section 1.3.2, approaches designed for PCH multiple testing (in that they
cannot be applied to the single PCH testing setting) can generally be grouped into two cat-
egories: empirical Bayes (EB) methods, which estimate the proportion of PCH’s belonging
to each null configuration, and filtering methods, which filter out unpromising PCH’s and
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analyze the remaining subset. Our analysis includes two state-of-the-art EB methods, the
Divide-Aggregate Composite-null Test (DACT) (Liu et al., 2022) and High Dimensional Mul-
tiple Testing (HDMT) (Dai et al., 2020) and two state-of-the-art filtering methods, AdaFilter
(Wang et al., 2021) and the method presented in Dickhaus et al. (2021), which we refer to
by the authors’ initials “DHH”.

Both DACT and HDMT adapt existing empirical Bayes frameworks for estimating the pro-
portion of each null configuration (Efron et al., 2001; Storey, 2002; Storey et al., 2004). The
primary difference between DACT and HDMT (and EB methods in general) lies in how the
estimated proportions are used. DACT generates individual PCH p-values that are weighted
sums of the estimated proportions of each null configuration, on which FDR controlling pro-
cedures like BH can be applied. HDMT estimates the FDR of the Max-P test at a given
rejection threshold using these proportions, then selects the largest rejection threshold such
that the estimated FDR is less than or equal to the desired level. Importantly, both HDMT
and DACT are designed for causal mediation analysis, a specific case of PCH testing with
r = m = 2, and thus, are only applicable (as implemented) when m = 2. However, the
statistical frameworks used by EB methods for estimating the proportions of the null con-
figurations are not limited to the m = 2 case and thus, these methods could reasonably be
extended to larger m. As the computational cost of EB methods can grow exponentially in
m (Wang et al., 2021), fixing r = m = 2 allows EB methods to produce accurate estimates
of the true proportions within reasonable computational limits, as long as M is sufficiently
large and the conditions necessary for the consistency of their estimators are met.

AdaFilter is a filtering method that infers a new (ideally less conservative) rejection threshold
in a data-adaptive manner. It first reduces the set of total PCH’s to the subset that would
be rejected by Bonferroni PCH tests for H

(r−1)/m
0 , then applies an adjusted version of the

Bonferroni PCH test for H
r/m
0 to each PCH in the reduced set. Intuitively, this filtering is

effective because the null PCH’s that are rejected for H
(r−1)/m
0 are close to the LFN, so the

Bonferroni PCH test will be less conservative on the reduced set.

DHH filters out all PCH p-values pr/m above some threshold τ , then applies a transformation
to the smaller subset so that, under mild conditions on the pij and pr/m, various FDR
controlling procedures such as BH and Storey’s procedure can be applied to the smaller
subset to control FDR on the entire set. Thus, there are many variations of DHH depending
on the PCH p-value and multiple testing procedure used. In our analysis, we use PCH
p-values from Bonferroni’s, Simes’, and Fisher’s tests, which are shown in Dickhaus et al.
(2021) to satisfy the conditions necessary for the DHH procedure (with fixed τ) to have FDR
control when using BH or Storey’s procedure.

As with the cPCH test, we use the FDR controlling procedures BH, Storey’s, and AdaPT–
GMM (when applicable) to the PCH p-values produced from DACT and DHH. We also
include the standard Bonferroni’s, Simes’, and Fisher’s tests for single PCH testing in com-
bination with BH, Storey’s procedure, and AdaPT–GMM (when applicable) as benchmarks
for comparison. For all the following simulations, we generate data such that the pij are
independent. Table 2 provides a brief overview of the validity guarantees of all methods
under consideration with further details in Appendix C.1.
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Table 2

Method Validity Guarantee

Empirical Bayes
DACT Asymptotic FDR control∗, only considers m = 2
HDMT Asymptotic FDR control†, only considers m = 2

Filtering
AdaFilter Asymptotic FDR control, upper bound on finite sample FDR
DHH Finite sample FDR control

Single PCH‡

cPCH Approximate finite sample Type I error control?

Standard Finite sample Type I error control

∗: Requires that the regularity conditions of Jin and Cai (2007) hold.
†: Requires estimated null proportions (Storey, 2002; Storey et al., 2004) are con-
sistent.
‡: With multiple testing procedures BH, Storey’s Procedure, and AdaPT–GMM.
?: As specified in Section 2.4.

3.3.2 PCH Multiple Testing for r = m = 2

We first assess the FDR and power of all methods under consideration when r = m = 2. We
begin with r = m = 2 because it is the simplest setting for PCH testing and the one that
EB methods are designed for, allowing us to assess all the methods under consideration. We
explore PCH multiple testing when m ≥ 3 in the following subsection.

In this subsection, we consider two PCH multiple testing settings: the “classic“ setting, where
the methods only have access to the base test statistics Tij, and the covariate-assisted setting,
where the methods have access to a covariate Xj along with Tij. PCH multiple testing with
covariates arises in several important settings such as fMRI analysis, where fMRI scans are
often taken across multiple subjects to evaluate whether certain brain regions were replicably
activated across subjects (Heller et al., 2007). In such settings, it can be desirable to include
covariate information like the (x, y, z) coordinates of the voxel locations, which are often
highly informative of brain activation to certain stimuli. Since the cPCH test, the Max-P
test, DACT, and DHH produce individual PCH p-values (though DACT and DHH rely on
being in a PCH multiple testing setting to do so), they can be combined with covariate-
assisted multiple testing procedures like AdaPT–GMM to leverage covariate information. It
is not clear how to leverage covariate information in AdaFilter and HDMT.

We generate the data (Xj, Tij), i = 1, 2, j = 1, ..., 10, 000 by sampling independently from
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the following model:

Xj ∼ Unif[0, 1]

γij|Xj = Bern(π1(Xj)) where π1(Xj) =

{
1 if Xj ≥ 0.95

0.1 o/w

Tij|γij, Xj ∼ N (θγij, 1)

Here, Xj represents a (univariate) covariate that, when large, is highly informative that the
PCH is non-null. We generate rejections using all methods under consideration: AdaFilter,
DHH, HDMT, DACT, Max-P, and the cPCH test (N = 10, 000). For the cPCH test, Max-
P, DHH, and DACT, we combine the individual PCH p-values produced by each method
with BH and Storey’s procedure (to assess their performance without access to covariate
information), and with AdaPT–GMM. All procedures are applied at nominal FDR level
q = 0.1.

3.3.2.1 Without Covariates

We first assess the FDR and power of all methods under consideration without the use
of covariate information, as shown in Figure 6. We ignore the solid lines for now, which
correspond to methods that leverage covariate information via AdaPT–GMM. We defer the
discussion of these methods to the following subsubsection.

In the standard no-covariate PCH multiple testing setting, DACT with BH and Storey’s
procedure is the most powerful but does not control FDR at the desired level. Among the
methods that have FDR control, HDMT is the most powerful, outperforming both filtering
approaches and the single PCH tests with BH and Storey’s procedure. Through additional
simulations, we find that EB methods tend to be more powerful than filtering and single PCH
test-based approaches, but are more susceptible to FDR violations; see the Appendix C.2.6.
These violations can occur even when M is large, which should be more favorable for EB
methods to control the FDR. In particular, we find various data generating settings where
HDMT does not control FDR; see Tables 6–7 in Appendix C.2.6. Additionally, we find that
DACT tends to be more powerful than HDMT in settings where it does control FDR but
can experience large FDR inflation in certain settings; see Table 6 in Appendix C.2.6. To
provide further intuition for these results, we note that EB methods can gain power not only
by resolving the conservativeness of standard single PCH tests but also potentially through
learning about the distribution of the parameters. In this way, we expect EB methods
to be more powerful than frequentist approaches to PCH testing (and this is reflected in
our simulation), even if there was no underlying conservativeness in standard single PCH
testing. However, this use of the learned parameter distribution is likely also the source
of FDR violations for EB methods. Additionally, we note that the motivating application
area for DACT and HDMT is causal mediation analysis, specifically for testing the effect
of an exposure on a clinical outcome mediated through DNA methylations. Based on the
simulations and real data analysis of Liu et al. (2022), data for this setting tend to have a
very large proportion of nulls relative to alternative PCH’s.
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Figure 6: FDR and power of various PCH multiple testing methods at nominal FDR level
q = 0.1 (dotted black line) for testing H

2/2
0 . Each point represents 100 independent replicates

of the data generating procedure described in Section 3.3.2 for a given θ, where power
is estimated as the average proportion of non-null PCH’s that are rejected and FDR is
estimated as the average proportion of total rejections that are null. Error bars represent
two standard errors.

Therefore, the FDR violations found in our simulation studies may not manifest in data that
more closely emulates their desired application area.

While the filtering approaches, AdaFilter and DHH with BH and Storey’s procedure, are
less powerful than EB methods, they are still more powerful than the single PCH tests with
BH and Storey’s procedure. Generally, we find that filtering methods have relatively high
power along with robust FDR control across a wide array of data generating settings, which
we explore further in Section 3.3.3 and Section 4. While DHH guarantees finite-sample FDR
control, we find in Section 3.3.3 that even AdaFilter, which only guaranteed FDR control
at qc(M) for c(M) ≈ log(M), empirically controls FDR at level q across a wide range of
settings. Additionally, the data generating procedure in this subsection is not particularly
amenable to DHH’s filtering approach, as we expect the proportion of global nulls to be
relatively small, and thus, relatively few PCH p-values will be above τ . We explore a wider
range of data generating settings, including those more amenable to filtering approaches in
general, in Section 3.3.3.

Lastly, we note that the cPCH test with BH and Storey’s procedure is slightly more powerful
than its standard counterparts, but is less powerful than the filtering and EB methods.
However, a primary advantage of the cPCH test is its flexibility to be combined with different
multiple testing procedures depending on the problem specifics, thus allowing it to gain
power over approaches that may not have been designed for the specific problem at hand. In
particular, we have thus far not discussed the use of available side information in the form
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the covariate Xj, and we exhibit the power gains that can be achieved through using the
cPCH test when allowing it to use the covariate information in the following subsection.

3.3.2.2 With Covariates

Now including methods that leverage covariate information, we find that the cPCH test
with AdaPT–GMM is more powerful than all other approaches, while still controlling FDR
(Figure 6). Like with BH and Storey’s procedure, DACT with AdaPT–GMM seems to be
the most powerful but has large FDR inflation and thus cannot be fairly compared with
the other approaches. Generally, methods that can leverage covariate information have
greater power than methods that cannot. Even the highly conservative Max-P test paired
with AdaPT–GMM outperforms HDMT (the best performing method excluding covariate
information), AdaFilter, and the DHH–based approaches, including DHH with AdaPT–
GMM. Additionally, the cPCH test with AdaPT–GMM is much more powerful than every
other method in the low signal regime, which, as we discussed in Section 1.3.1, is an important
regime for various application areas such as genetic epidemiology.

Interestingly, AdaPT–GMM with cPCH and AdaPT–GMM with Max-P are the two most
powerful approaches that also control FDR, thus outperforming AdaPT–GMM when paired
with PCH multiple testing methods like DACT and DHH. Notably, while the cPCH test with
AdaPT–GMM is significantly more powerful than the cPCH test with Storey’s procedure,
DHH with AdaPT–GMM is only slightly more powerful than DHH with Storey’s procedure.
This trend likely occurs because the transformation applied to the DHH p-values causes
the covariate to seem much less informative than it actually is, undercutting the benefits of
AdaPT–GMM. Figure 16 in Appendix C.2.5, which shows the rejections made by AdaPT–
GMM for the cPCH test and DHH, shows that AdaPT–GMM with cPCH is able to clearly
detect that the covariate being above 0.95 is highly informative of the PCH being in the
alternative while that trend is more muddled when using DHH.

This covariate-assisted setting also exhibits how the cPCH test can leverage learned prior
information while empirically controlling FDR, which is one of the primary challenges for EB
methods. Most importantly, this setting highlights what is perhaps the primary advantage of
the cPCH test for PCH multiple testing: it can be powerfully combined with various multiple
testing procedures, thus allowing users to leverage the vast existing literature on multiple
testing to choose procedures that will allow them to gain power based on the specifics of
their problem.

3.3.3 PCH Multiple Testing for m = 4

To approximate the real-data example in the following section, we conduct a simulation
study to assess the empirical FDR and power of various PCH multiple testing approaches
when m = 4 and M = 2000. As we explore a few different testing scenarios in our real
data example, we choose a data generating procedure that allows us to flexibly vary the
proportion of null and alternative configurations, thus emulating a wide range of possible
testing scenarios for m = 4 and M = 2000. We generate the data Tij, i = 1, ..., 4, j =
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1, .., 2000 by sampling independently from the following model:

Bj ∼ Bern(π1)

γij|Bj ∼

{
Bj w/p w

Bern(π1) w/p 1− w
Tij|γij, Bj ∼ N (θγij, 1)

π1 tunes the expected proportion of the null and alternative PCH’s and p tunes the likelihood
of each null and alternative configuration. For example, when w = 1, we expect π1 of the
total PCH’s to be alternatives, all of which are “full alternatives” (i.e., r? = m), and all
remaining PCH’s to be global nulls.

Discoveries are generated using AdaFilter, the cPCH (N = 10, 000) test, the standard Bon-
ferroni, Simes, and Fisher tests, and DHH (τ = 0.1), each with BH and Storey’s procedures.
All procedures are applied at nominal FDR level q = 0.1. The EB methods under consider-
ation focus on the m = 2 case and hence cannot be applied in this setting.

Figure 7: Power of various methods for PCH multiple testing at nominal FDR level q = 0.1.
Each point represents the average proportion of non-null PCH’s which are rejected over 1000
independent replicates of the data generating procedure described in Section 3.3.3 for a given
θ. All standard errors were less than 0.015.

Appendix C.2.4 shows that all methods under consideration empirically control the FDR
at the nominal level for every combination of θ, π1, and w tested. Note, finite-sample FDR
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control is guaranteed with the Max-P test (with BH and Storey’s procedure) and DHH (with
BH and Storey’s procedure). These results, along with those of the previous section, suggest
that AdaFilter and the cPCH–based approaches, neither of which guaranteed FDR control
at level q in this setting, have robust FDR control across a wide array of testing settings.
As shown in Figure 7, we find that the relative power of these methods is highly sensitive
to the underlying data generating distribution, so no method dominates all others across
all settings. However, the cPCH test is more powerful than its standard counterparts in all
data generating settings. As expected, we see that the AdaFilter and DHH methods have
the highest power when π1 is small, as the construction of filtering methods allows them to
be especially effective in this setting. For instance, DHH is likely to significantly reduce the
multiplicity of PCH’s being tested as a vast majority of the PCH p-values will be above τ .

However, in settings where π1 is large, the cPCH test with Storey’s procedure generally
outperforms all other methods. As we alluded to in Section 1.3.2, even the standard single
PCH tests with BH and Storey’s procedure can outperform DHH and AdaFilter in this
setting. There are various important applications where π1 is expected to be large. For
instance, in epigenetics, promising sets of candidate genes from pre-screening studies or prior
knowledge are often re-evaluated in follow-up studies (O’Donovan et al., 2008; Benjamini
et al., 2009; Rietveld et al., 2014). In this setting, researchers expect that a relatively large
proportion of genes will show replicating results as they have already been identified as
promising. We explore this follow-up setting through a real-data example in Section 4.

4 Differential Gene Expression Analysis

Duchenne Muscle Dystrophy (DMD) is a genetic disorder characterized by progressive mus-
cle degeneration in young children. Understanding the genetic markers of DMD enables
clinicians to link the effects of the disease with their associated genes, thus providing a path-
way for targeted drug therapies. Analyzing the average power in both a single PCH testing
and follow-up study setting, we demonstrate that the cPCH test has improved power for
detecting replicating genetic markers that may be associated with DMD progression over
existing methods in these settings.

As in Kotelnikova et al. (2012) and Wang et al. (2021), we analyze four independent DMD-
related microarray datasets (GDS214, GDS563, GDS1956, and GDS3027) from the Gene
Expression Omnibus (GEO) database, a public functional genomics data repository. The
datasets are first pre-processed using limma, the standard package for processing microarray
data. For each gene, limma outputs the test statistic from a two-sample t-test for testing
whether that gene is differentially expressed in DMD patients compared to healthy subjects;
the test statistics are post-processed as in Wang et al. (2021) to account for some data
artifacts. Therefore, we expect the test statistics to follow an approximately normal location
family with unit variance, as assumed in Condition (1).

Since the studies use various microarray platforms to measure gene expression, some genes
have multiple measurements associated with different probe sets. To combine data for a
single gene across the probe sets, we take an average of that gene’s corresponding test
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statistic for each probe set and scale appropriately so that the resulting test statistic is still
approximately normally distributed with unit variance. In total, M = 1871 unique genes
are shared among the 4 studies.

First, we can treat this data as a set of p-values and assess the empirical power, i.e., the
total positive rate, calculated as the proportion of p-values below the nominal level α across
the M genes, of the cPCH test compared to that of its standard counterparts for single PCH
testing. As shown in Table 3, the cPCH test makes substantially more rejections than its
standard counterparts at nominal level α = 0.05.

cPCH-Fisher cPCH-Simes cPCH-Bonferroni

r = 2 27.8 (+18.8%) 24.9 (+23.9%) 24.7 (+25.4%)
r = 3 18.3 (+43.0%) 17.7 (+51.3%) 16.2 (+39.7%)
r = 4 9.2 (+84.0%) 9.2 (+84.0%) 9.2 (+84.0%)

Table 3: Total positive rate of the cPCH test compared to its standard counterparts at
nominal level α = 0.05. The first value in each entry represents the proportion of cPCH
p-values below α and the second value represents the percent increase in the total positive
rate compared to the corresponding standard single PCH test. Treating the p-values as
independent, the implied standard errors are approximately 0.9% for r = 2, 3 and 0.5−0.7%
for r = 3, 4.

Next, to emulate a follow-up study analysis, we first fix one of the studies as the primary
study, then apply BH at nominal FDR level q0 = 0.1 to select promising candidate genes.
The remaining three studies are treated as follow-up studies to test the partial conjunction
hypotheses for r = 2, 3 at nominal FDR level q = 0.1 for the candidate genes from the
primary study. We repeat this for all 4 studies.

We also conduct a follow-up study analysis using two of the studies to filter candidate genes,
as it is often common for the same laboratory to conduct two independent studies to verify
their results, then have separate independent groups verify those results in follow-up studies
(Rietveld et al., 2014). For the two-study follow-up analysis, we use the Max-P test at
nominal FDR level q0 = 0.1 to find the candidate genes, then test the partial conjunction
hypothesis for r = 2 at nominal FDR level q = 0.1 using the remaining two studies.

Table 4 shows that cPCH using Fisher’s combining function and Storey’s procedure leads to
the discovery of more differentially expressed genes in both the one-study-screen and two-
study-screen follow-up study settings. However, in a standard PCH testing analysis, where
we test H

r/4
0 using all four studies without any initial screening, AdaFilter outperforms

the cPCH-based approaches for r = 3, 4; see Appendix D.1 for more details. Table 9 in
Appendix D.2 shows 20 of the total genes discovered by cPCH using Fisher’s combining
function and Storey’s procedure at r = 3 with GDS1956 set as the initial screening study. As
desired, many of these genes have biological functions associated with muscle maintenance
and cell growth regulation. In particular, MYH3, MYH8, MYL4, and MYL5 are known
genetic markers for DMD.
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cPCH-Storey cPCH-BH DHH-
Storey

DHH-
BH

AdaFilter

One Study
Screen

r = 2 254.3 (+15.4%) 179.3 (+8.47%) 106.0 124.5 168.0
r = 3 78.5 (+49.5%) 58.5 (+29.3%) 21.0 23.8 68.8

Two Study
Screen

r = 2 33.5 (+5.78%) 26.5 (+12.0%) 13.7 18.5 26.5

Table 4: The average number of rejections made for each method when screening first on
one or two of the four DMD studies, then treating the remaining studies as follow-up studies
using nominal FDR level q = 0.1 for the partial conjunction hypothesis testing. Fisher’s
combining function is used throughout as we found it outperforms Simes and Bonferroni in
this example. Percentages represent the percent increase in rejections over the corresponding
standard methods.

5 Conclusion

The cPCH test resolves the conservativeness of standard approaches by conditioning on the
largest base test statistics, allowing the test statistic to be less sensitive to the estimation
of unknown parameters (Section 2.2). While our implementation is tailored to the common
setting where each base test statistic is a single, independent, unit-variance Gaussian, we
find that the cPCH test is robust to model misspecification (Section 3.2). Additionally, our
framework for computing cPCH p-values can be extended to any one-parameter location
family (Section 2.5), and we expect the power and Type I error control results for Gaussian
base test statistics to extend to other distributional assumptions (Section 3.2).

Through simulations and a real data example, we find that the cPCH test produces nearly
uniform p-values under the null and uniformly outperforms standard single PCH testing
approaches (Sections 2.4, 3.1). In certain settings, the cPCH test used in combination with
different multiple testing procedures outperforms state-of-the-art approaches designed for
PCH multiple testing (Section 3.3). In particular, our results on PCH multiple testing with
covariates exhibit a primary advantage of the cPCH test in the PCH multiple testing setting:
it can flexibly adapt to specific problems by leveraging the vast, existing literature on multiple
testing procedures, many of which require or perform best when provided p-values that are
uniform under the null (Section 3.3.2).
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A Proof of Theorem 1

In the body of this paper, we state Theorem 1 with conditions that are sufficient for the
weaker conditions we use here. In particular, Assumption 3 allows for more general sequences
of estimators for θ

(n)
(m−r+2:m) when setting the rejection threshold of the cPCH test. We show

in Lemma 6 that choosing T
(n)
(m−r+2:m) as the estimator for θ

(n)
(m−r+2:m), as in the definition of

the cPCH test in Definition 2, satisfies Assumption 3.

A.1 Preliminaries

Let θ̂(m−r+2:m) be an estimator for θ(m−r+2:m). Recall that we define cα(θ(m−r+2:m),T(m−r+2:m))
to be the 1−α quantile of the distribution of f

(
T(1:m−r+1)

)
| T(m−r+2:m) where T ∼ N (θ, Im),

θ(1:m−r+1) = 0, θ(m−r+2:m) comes from the first argument to cα, and Im is the m×m identity
matrix. As in Section 2.1, we use order statistic notation to refer to ordering by magni-
tudes, i.e., for a vector of test statistics T , we order {T(i)}mi=1 by |T(1)| ≤ ...|T(m)| and let
T(i:j) = (T(i), ..., T(j)) for i ≤ j.

Definition 4 (Generalized cPCH test). The generalized cPCH test rejects H
r/m
0 when

f
(
T(1:m−r+1)

)
> cα

(
θ̂(m−r+2:m),T(m−r+2:m)

)
.

Setting θ̂(m−r+2:m) = T(m−r+2:m) recovers the original cPCH test as in Definition 2.

Recall from Section 2.4.1 that we define an LFN sequence
(
θ(n)

)
as a sequence in Θ

r/m
0 such

that
∣∣∣θ(n)

(j)

∣∣∣→∞ for j = m−r+2, ...,m as n→∞. Note, the remaining θ
(n)
(1) , ...,θ

(n)
(m−r+1) are

zero by definition of Θ
r/m
0 . Recall from Section 2.3 that we define the rejection threshold of

the PCH Oracle test cα
(
θ(m−r+2:m)

)
as the 1−α quantile of the distribution of f

(
T(1:m−r+1)

)
where T ∼ N (θ, Im) and θ is comprised ofm−r+1 zeroes and the elements of θ(m−r+2:m). For

a test statistic vector T (n), let ϕcPCHα

(
T (n)

)
:= 1

{
f
(
T

(n)
(1:m−r+1)

)
> cα

(
θ̂

(n)
(m−r+2:m),T

(n)
(m−r+2:m)

)}
and ϕPCHOracα

(
T (n)

)
:= 1

{
f
(
T

(n)
(1:m−r+1)

)
> cα

(
θ

(n)
(m−r+2:m)

)}
represent the decisions made

by the generalized cPCH test and PCH Oracle test, respectively. Throughout all proofs, we
will use

p→ to denote convergence in probability and the superscript c to denote the comple-
ment of a set. In the following section, we state and prove a version of Theorem 1 for the
generalized cPCH test.

A.2 Theorem 1 for the Generalized cPCH Test

Assumption 1. Assume
(
θ(n)

)
is a LFN sequence and that T (n) ∼ N (θ(n), Im).

Assumption 2. Assume f : Rm−r+1 → R is permutation invariant, continuously differen-
tiable, and has ∇f 6= 0 except on a set whose closure has measure zero.

Assumption 3. Assume
(
θ̂

(n)
(m−r+2:m)

)
is a sequence of estimators for the LFN sequence
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(
θ

(n)
(m−r+2:m)

)
with the following property: For any K > 0, limn→∞ Pθ(n)

(∣∣∣θ̂(n)
(i)

∣∣∣ > K
)

= 1

for i = m− r + 2, ...,m.

Theorem 1∗ (Exactness of the generalized cPCH test under the LFN case). Under Assump-
tions 1–3, for any α ∈ (0, 1),

lim
n→∞

Pθ(n)

(
ϕcPCH
α

(
T (n)

)
= ϕPCHOrac

α

(
T (n)

))
= 1.

In particular, the above implies that the generalized cPCH test’s limiting Type I error under
any LFN sequence is exactly α.

Proof. Without loss of generality, assume θ(n) =
(

0, ...0, θ
(n)
m−r+2, ..., θ

(n)
m

)
where θ

(n)
i → ∞

for i = m − r + 2, ...,m. Let Rf := Range(f). For x ∈ Rf , let G
(
x,θ

(n)
(m−r+2:m)

)
:=

Pθ(n)

(
f
(
T

(n)
(1:m−r+1)

)
≤ x

)
.2 Let H(x) := Pθ(n)

(
f
(
T

(n)
1:m−r+1

)
≤ x

)
; note that T

(n)
1:m−r+1 ∼

N (0, Im−r+1) for all n, so H does not vary with n. For a ∈ (0, 1), let

ca

(
θ

(n)
(m−r+2:m)

)
= inf

{
x : G

(
x,θ

(n)
(m−r+2:m)

)
≥ 1− a

}
and c∗a = inf {x : H(x) ≥ 1− a}.

Lemma 1 (stated below and proved in Appendix A.3) establishes that cα

(
θ

(n)
(m−r+2:m)

)
, the

rejection threshold of the level α PCH Oracle test, converges to c∗α:

Lemma 1. Under Assumptions 1-2, for α ∈ (0, 1),

cα

(
θ

(n)
(m−r+2:m)

)
→ c∗α.

Lemma 2 (stated below and proved in Appendix A.3) establishes that cα

(
θ̂

(n)
(m−r+2:m),T

(n)
(m−r+2:m)

)
,

the rejection threshold of the level α generalized cPCH test, converges to c∗α in probability:3

Lemma 2. Under Assumptions 1-3, for α ∈ (0, 1),

cα

(
θ̂

(n)
(m−r+2:m),T

(n)
(m−r+2:m)

)
p→ c∗α.

Fix α ∈ (0, 1) and ε > 0. Let Qn = Pθ(n)

(
|cα
(
θ̂

(n)
(m−r+2:m),T

(n)
(m−r+2:m)

)
− c∗α| ≤ ε

)
. By

2By Assumption 2, G is permutation invariant with respect to θ(n), so Pθ(n)

(
f
(
T

(n)
(1:m−r+1)

)
≤ x

)
=

Pσ(θ(n))

(
f
(
T

(n)
(1:m−r+1)

)
≤ x

)
for any permutation of the elements of θ(n), σ(θ(n)). Therefore, we can use

θ
(n)
(m−r+2:m) to represent θ(n) in the input to G.

3Unlike cα

(
θ
(n)
(m−r+2:m)

)
, which is a fixed real number for each n, cα

(
θ̂
(n)
(m−r+2:m),T

(n)
(m−r+2:m)

)
is a

random variable that is a function of T (n) both through the conditioning event and θ̂
(n)
(m−r+2:m).
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Lemma 2, limn→∞Qn = 1. So,

lim
n→∞

Pθ(n)

(
ϕcPCH
α

(
T (n)

)
6= ϕPCHOrac

α

(
T (n)

))
= lim

n→∞
Pθ(n)

(
ϕcPCH
α

(
T (n)

)
6= ϕPCHOrac

α

(
T (n)

) ∣∣∣ |cα (θ̂(n)
(m−r+2:m),T

(n)
(m−r+2:m)

)
− c∗α| ≤ ε

)
Qn+

Pθ(n)

(
ϕcPCH
α

(
T (n)

)
6= ϕPCHOrac

α

(
T (n)

) ∣∣∣ |cα (θ̂(n)
(m−r+2:m),T

(n)
(m−r+2:m)

)
− c∗α| > ε

)
(1−Qn)

= lim
n→∞

Pθ(n)

(
ϕcPCH
α

(
T (n)

)
6= ϕPCHOrac

α

(
T (n)

) ∣∣∣ |cα (θ̂(n)
(m−r+2:m),T

(n)
(m−r+2:m)

)
− c∗α| ≤ ε

)
,

(3)

where the last line follows from Lemma 2. By Lemma 1, there exists Nε ∈ N such that for

all n ≥ Nε, |cα
(
θ

(n)
(m−r+2:m)

)
− c∗α| < ε. So, for n ≥ Nε,

Pθ(n)

(
ϕcPCH
α

(
T (n)

)
6= ϕPCHOrac

α

(
T (n)

) ∣∣∣ |cα (θ̂(n)
(m−r+2:m),T

(n)
(m−r+2:m)

)
− c∗α| ≤ ε

)
≤ Pθ(n)

(
f
(
T

(n)
(1:m−r+1)

)
∈ (c∗α − ε, c∗α + ε)

∣∣∣ |cα (θ̂(n)
(m−r+2:m),T

(n)
(m−r+2:m)

)
− c∗α| ≤ ε

)
.

Since limn→∞Qn = 1,

lim
n→∞

Pθ(n)

(
f
(
T

(n)
(1:m−r+1)

)
∈ (c∗α − ε, c∗α + ε)

∣∣∣ |cα (θ̂(n)
(m−r+2:m),T

(n)
(m−r+2:m)

)
− c∗α| ≤ ε

)
= lim

n→∞
Pθ(n)

(
f
(
T

(n)
(1:m−r+1)

)
∈ (c∗α − ε, c∗α + ε)

)
(4)

where the last line follows by Lemma 3, (stated below and proved in Appendix A.4), assuming
the above limit exists, which we show in Equation (5):

Lemma 3. Let (Ω,F ,P) be a probability space. Let An and Bn be a sequence of events in Ω
where limn→∞ P (Bn) = 1 and limn→∞ P (An) = a for some a ∈ [0, 1]. Then, P (An ∩Bn)→ a
and P (An | Bn)→ a.

LetBn

(
θ(n),T (n)

)
be the event that, for T (n) ∼ N (θ(n), Im),

{
T

(n)
(m−r+2), ..., T

(n)
(m)

}
=
{
T

(n)
m−r+2, ..., T

(n)
m

}
.

The set
{
T

(n)
(m−r+2), ..., T

(n)
(m)

}
will almost surely be uniquely defined because we will almost

surely have no ties among the T
(n)
i ’s since T (n) ∼ N (θ(n), Im). We show in the proof of

Lemma 1 that limn→∞ Pθ(n)

(
Bn

(
θ(n),T (n)

))
= 1. So,

lim
n→∞

Pθ(n)

(
f
(
T

(n)
(1:m−r+1)

)
∈ (c∗α − ε, c∗α + ε)

)
= lim

n→∞
Pθ(n)

(
f
(
T

(n)
(1:m−r+1)

)
∈ (c∗α − ε, c∗α + ε)

∣∣∣ Bn

(
θ(n),T (n)

))
Pθ(n)

(
Bn

(
θ(n),T (n)

))
+

Pθ(n)

(
f
(
T

(n)
(1:m−r+1)

)
∈ (c∗α − ε, c∗α + ε)

∣∣∣ Bn

(
θ(n),T (n)

)c)Pθ(n)

(
Bn

(
θ(n),T (n)

)c)
= lim

n→∞
Pθ(n)

(
f
(
T

(n)
(1:m−r+1)

)
∈ (c∗α − ε, c∗α + ε)

∣∣∣ Bn

(
θ(n),T (n)

))
= lim

n→∞
Pθ(n)

(
f
(
T

(n)
1:m−r+1

)
∈ (c∗α − ε, c∗α + ε)

∣∣∣ Bn

(
θ(n),T (n)

))
= H(c∗α + ε)−H(c∗α − ε), (5)
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where the fourth line follows from the fact that limn→∞ Pθ(n)

(
Bn

(
θ(n),T (n)

))
= 1 and the

fifth line follows from the conditioning on Bn

(
θ(n),T (n)

)
and the permutation invariance of

f in Assumption 2.

The last line follows from applying Lemma 3 using the facts that limn→∞ Pθ(n)

(
Bn

(
θ(n),T (n)

))
=

1 and limn→∞ Pθ(n)

(
f
(
T

(n)
1:m−r+1

)
∈ (c∗α − ε, c∗α + ε)

)
= H(c∗α + ε) −H(c∗α − ε). Combining

Equations (3)-(5), we have that

lim
n→∞

Pθ(n)

(
ϕcPCH
α

(
T (n)

)
6= ϕPCHOrac

α

(
T (n)

))
≤ H(c∗α + ε)−H(c∗α − ε).

Since ε was arbitrary, the above is true for any ε > 0. Additionally, H is continuous on Rf

as a result of Lemma 4 (stated below and proved in Appendix A.4):

Lemma 4. If X = (X1, ..., Xl) is a vector of continuous random variables supported on Rl

with density pX(x) > 0 for all x ∈ Rl and f : Rl → R is continuously differentiable function
with ∇f 6= 0 except on a set whose closure has measure zero, then the CDF of f(X) is
continuous and strictly increasing on the range of f .

So, by the continuity of H, as ε→ 0, H(c∗α + ε)−H(c∗α − ε)→ 0.

Therefore, we conclude that limn→∞ Pθ(n)

(
ϕcPCH
α

(
T (n)

)
6= ϕPCHOrac

α

(
T (n)

))
= 0 and hence,

lim
n→∞

Pθ(n)

(
ϕcPCH
α

(
T (n)

)
= ϕPCHOrac

α

(
T (n)

))
= 1.

A.3 Lemmas for Proving Theorem 1∗

Lemmas 1-2 are the main results that allow us to prove Theorem 1∗, with Lemmas 3-4
providing useful results that help to complete the proof of Theorem 1∗ and are used in the
proofs of Lemmas 1-2. The proof of Lemma 2 additionally relies on Lemmas 5-6. The proofs
of Lemmas 1-2 are below. Lemmas 3-6 are proved in Appendix A.4.

Lemma 1. Under Assumptions 1-2, for α ∈ (0, 1),

cα

(
θ

(n)
(m−r+2:m)

)
→ c∗α.

Proof. As in Theorem 1∗, let θ(n) =
(

0, ..., 0, θ
(n)
m−r+2, ..., θ

(n)
m

)
where θ

(n)
i → ∞ and define

Bn

(
θ(n),T (n)

)
as the event that, for T (n) ∼ N (θ(n), Im),

{
T

(n)
(m−r+2), ..., T

(n)
(m)

}
=
{
T

(n)
m−r+2, ..., T

(n)
m

}
.

We will first show that limn→∞ Pθ(n)

(
Bn

(
θ(n),T (n)

))
= 1. Let K > 0. Then,

lim
n→∞

Pθ(n)

(∣∣∣T (n)
i

∣∣∣ > K
)

= lim
n→∞

1− Φ
(
K − θ(n)

i

)
+ Φ

(
−K − θ(n)

i

)
= 1, (6)

36



where the last line follows from Assumption 1. Let F
(n)
K :=

{
mini=m−r+2,...,m

∣∣∣T (n)
i

∣∣∣ > K
}

.

Then,

Pθ(n)

(
F

(n)
K

)
= Pθ(n)

(
m⋂

i=m−r+2

{∣∣∣T (n)
i

∣∣∣ > K
})

=
m∏

i=m−r+2

Pθ(n)

(∣∣∣T (n)
i

∣∣∣ > K
)
→ 1, (7)

where the second equality follows from the fact that T
(n)
m−r+2, ..., T

(n)
m are independent and

the last result follows from Equation (6). So,

Pθ(n)

(
Bn

(
θ(n),T (n)

))
= Pθ(n)

({
T

(n)
(m−r+2), ..., T

(n)
(m)

}
=
{
T

(n)
m−r+2, ..., T

(n)
m

})
= Pθ(n)

(
max

j=1,...,m−r+1

∣∣∣T (n)
j

∣∣∣ < min
i=m−r+2,...,m

∣∣∣T (n)
i

∣∣∣)
= Pθ(n)

(
max

j=1,...,m−r+1

∣∣∣T (n)
j

∣∣∣ < min
i=m−r+2,...,m

∣∣∣T (n)
i

∣∣∣ ∣∣∣∣ F (n)
K

)
Pθ(n)

(
F

(n)
K

)
+ Pθ(n)

(
max

j=1,...,m−r+1

∣∣∣T (n)
j

∣∣∣ < min
i=m−r+2,...,m

∣∣∣T (n)
i

∣∣∣ ∣∣∣∣ F (n)c
K

)
Pθ(n)

(
F

(n)c
K

)
.

By Equation (7),

lim
n→∞

Pθ(n)

(
Bn

(
θ(n),T (n)

))
= lim

n→∞
Pθ(n)

(
max

j=1,...,m−r+1

∣∣∣T (n)
j

∣∣∣ < min
i=m−r+2,...,m

∣∣∣T (n)
i

∣∣∣ ∣∣∣∣ F (n)
K

)
,

where, for any n,

Pθ(n)

(
max

j=1,...,m−r+1

∣∣∣T (n)
j

∣∣∣ < min
i=m−r+2,...,m

∣∣∣T (n)
i

∣∣∣ ∣∣∣∣ F (n)
K

)
≥ Pθ(n)

(
max

j=1,...,m−r+1

∣∣∣T (n)
j

∣∣∣ < K

∣∣∣∣ F (n)
K

)
= Pθ(n)

(
max

j=1,...,m−r+1

∣∣∣T (n)
j

∣∣∣ < K

)
= (Φ(K)− Φ(−K))m−r+1.

Therefore,
lim
n→∞

Pθ(n)

(
Bn

(
θ(n),T (n)

))
≥ (Φ(K)− Φ(−K))m−r+1.

Since K was arbitrary, the above line holds for any K > 0. Note that as K gets arbitrarily
large, (Φ(K)− Φ(−K))m−r+1 → 1. Therefore,

lim
n→∞

Pθ(n)

(
Bn

(
θ(n),T (n)

))
= 1. (8)
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Let x ∈ Rf . Then,

lim
n→∞

G
(
x,θ

(n)
(m−r+2:m)

)
= lim

n→∞
Pθ(n)

(
f
(
T

(n)
(1:m−r+1)

)
≤ x

)
= lim

n→∞
Pθ(n)

(
f
(
T

(n)
(1:m−r+1)

)
≤ x

∣∣∣ Bn

(
θ(n),T (n)

))
Pθ(n)

(
Bn

(
θ(n),T (n)

))
+

Pθ(n)

(
f
(
T

(n)
(1:m−r+1)

)
≤ x

∣∣∣ Bn

(
θ(n),T (n)

)c)Pθ(n)

(
Bn

(
θ(n),T (n)

)c)
= lim

n→∞
Pθ(n)

(
f
(
T

(n)
(1:m−r+1)

)
≤ x

∣∣∣ Bn

(
θ(n),T (n)

))
= lim

n→∞
Pθ(n)

(
f
(
T

(n)
1:m−r+1

)
≤ x

∣∣∣ Bn

(
θ(n),T (n)

))
= H(x),

where the fourth line follows from Equation (8), and the fifth line follows from the condition-
ing on Bn

(
θ(n),T (n)

)
and the permutation invariance of f in Assumption 2. The last line fol-

lows from Lemma 3 using Equation (8) and the fact that limn→∞ Pθ(n)

(
f
(
T

(n)
1:m−r+1

)
≤ x

)
=

H(x). So,

G
(
x,θ

(n)
(m−r+2:m)

)
→ H(x).

Since x was arbitrary, the above is true for any x ∈ Rf . Additionally, H is continuous on
Rf as a result of Lemma 4, where f satisfies the conditions of Lemma 4 by Assumption 2.
Therefore, by Lemma 21.2 of van der Vaart (1998), for any α ∈ (0, 1),

cα

(
θ

(n)
(m−r+2:m)

)
→ c∗α.

Lemma 2. Under Assumptions 1-3, for any α ∈ (0, 1),

cα

(
θ̂

(n)
(m−r+2:m),T

(n)
(m−r+2:m)

)
p→ c∗α.

Proof. Without loss of generality, let θ(n) =
(

0, ..., 0, θ
(n)
(m−r+2), ..., θ

(n)
(m)

)
where θ

(n)
i →∞ and

let θ̂(n) =
(

0, ..., 0, θ̂
(n)
(m−r+2), ..., θ̂

(n)
(m)

)
. Let

F̃
(
x,T (n)

)
:= PT̃ (n)∼θ̂(n)

(
f
(
T̃

(n)
(1:m−r+1)

)
≤ x

∣∣∣ T̃ (n)
(m−r+2:m) = T

(n)
(m−r+2:m),T

(n)
)

represent the

probability that f
(
T̃

(n)
(1:m−r+1)

)
≤ x conditional on T̃

(n)
(m−r+2:m) = T

(n)
(m−r+2:m) and T (n) where

the subscript on the probability denotes that T̃ (n) | θ̂(n)
(m−r+2:m) ∼ N (θ̂(n), Im). Note, this

probability is only over T̃ (n), which is a function of θ̂
(n)
(m−r+2:m). Therefore, F̃

(
x,T (n)

)
is a random variable since it is a function of T (n) both through the conditioning event

and through θ̂
(n)
(m−r+2:m). We consider F̃

(
x,T (n)

)
because cα

(
θ̂

(n)
(m−r+2:m),T

(n)
(m−r+2:m)

)
=

inf
{
x : F̃

(
x,T (n)

)
≥ 1− α

}
. Thus, to show our final result, we will first show that, for any

x ∈ Rf , F̃
(
x,T (n)

) p→ H(x).
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Showing F̃
(
x,T (n)

) p→ H(x) relies on Lemma 5 (stated below and proved in Appendix A.4):

Lemma 5. Under Assumptions 1 and 3,

PT̃ (n)∼θ̂(n)

(
Bn

(
θ̂(n), T̃ (n)

) ∣∣∣ T̃ (n)
(m−r+2:m) = T

(n)
(m−r+2:m),T

(n)
)

p→ 1.

Here, Bn

(
θ̂(n), T̃ (n)

)
represents the event that, for T̃ (n) | θ̂(n)

(m−r+2:m) ∼ N (θ̂(n), Im),{
T̃

(n)
(m−r+2), ..., T̃

(n)
(m)

}
=
{
T̃

(n)
m−r+2, ..., T̃

(n)
m

}
. The set

{
T̃

(n)
(m−r+2), ..., T̃

(n)
(m)

}
will almost surely be

uniquely defined since the T̃
(n)
i ’s will almost surely have no ties.

Note, PT̃ (n)∼θ̂(n)

(
Bn

(
θ̂(n), T̃ (n)

) ∣∣∣ T̃ (n)
(m−r+2:m) = T

(n)
(m−r+2:m),T

(n)
)

is also a random variable

as it is a function of T (n) both through the conditioning event and through θ̂
(n)
(m−r+2:m). For

ease of notation, let

G̃
(
x,T (n)

)
:= PT̃ (n)∼θ̂(n)

(
f
(
T̃

(n)
(1:m−r+1)

)
≤ x

∣∣∣ Bn

(
θ̂(n), T̃ (n)

)
, T̃

(n)
(m−r+2:m) = T

(n)
(m−r+2:m),T

(n)
)

.

Fix x ∈ Rf . Then,

F̃
(
x,T (n)

)
= G̃

(
x,T (n)

)
PT̃ (n)∼θ̂(n)

(
Bn

(
θ̂(n), T̃ (n)

) ∣∣∣ T̃ (n)
(m−r+2:m) = T

(n)
(m−r+2:m),T

(n)
)

+

G̃
(
x,T (n)

)
PT̃ (n)∼θ̂(n)

(
Bn

(
θ̂(n), T̃ (n)

)c ∣∣∣ T̃ (n)
(m−r+2:m) = T

(n)
(m−r+2:m),T

(n)
)
.

(9)

We will now show that G̃
(
x,T (n)

) p→ H(x). By the conditioning on Bn

(
θ̂(n), T̃ (n)

)
and the

permutation invariance of f in Assumption 2,

G̃
(
x,T (n)

)
= PT̃ (n)∼θ̂(n)

(
f
(
T̃

(n)
1:m−r+1

)
≤ x

∣∣∣ Bn

(
θ̂(n), T̃ (n)

)
, T̃

(n)
(m−r+2:m) = T

(n)
(m−r+2:m),T

(n)
)
.

T̃
(n)
1 , ..., T̃

(n)
m−r+1 are i.i.d. standard normally distributed by assumption, so,

T̃
(n)
1 , ..., T̃

(n)
m−r+1 | Bn

(
θ̂(n), T̃ (n)

)
, T̃

(n)
(m−r+2:m) = T

(n)
(m−r+2:m),T

(n) i.i.d.∼ Trunc–Norm
(

0, 1, T
(n)
(m−r+2)

)
,

where Trunc–Norm(0, 1, c) is the standard normal distribution truncated at −|c| and |c|
for c ∈ R. Let pT̃ (n)∼θ̂(n)

(
t
∣∣∣ Bn

(
θ̂(n), T̃ (n)

)
, T̃

(n)
(m−r+2:m) = T

(n)
(m−r+2:m),T

(n)
)

be the PDF

of T̃
(n)
1 , ..., T̃

(n)
m−r+1 conditional on Bn

(
θ̂(n), T̃ (n)

)
, T̃

(n)
(m−r+2:m) = T

(n)
(m−r+2:m),T

(n) evaluated

at t ∈ Rm−r+1. By definition of a truncated normal random variable, we have for any
t ∈ Rm−r+1,

pT̃ (n)∼θ̂(n)

(
t
∣∣∣ Bn

(
θ̂(n), T̃ (n)

)
, T̃

(n)
(m−r+2:m) = T

(n)
(m−r+2:m),T

(n)
)

=

m−r+1∏
i=1

φ(ti)1T (n)
(m−r+2)

(ti)

Φ
(∣∣∣T (n)

(m−r+2)

∣∣∣)− Φ
(
−
∣∣∣T (n)

(m−r+2)

∣∣∣) ,
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where 1
T

(n)
(m−r+2)

(t) := 1

{
t ∈
(
−
∣∣∣T (n)

(m−r+2)

∣∣∣ , ∣∣∣T (n)
(m−r+2)

∣∣∣)} for t ∈ R.

Set ε > 0 and define Sx = {t ∈ Rm−r+1 : f(t) < x}. By Assumption 2, there exists Kx > 0
such that for any t ∈ Sx , |ti| < Kx for all i = 1, ...,m− r+ 1. So, for any Kx > 0 satisfying
this condition,

Pθ(n)

(
|G̃
(
x,T (n)

)
−H(x)| > ε

)
= Pθ(n)

(
|G̃
(
x,T (n)

)
−H(x)| > ε

∣∣∣ ∣∣∣T (n)
(m−r+2)

∣∣∣ > Kx

)
Pθ(n)

(∣∣∣T (n)
(m−r+2)

∣∣∣ > Kx

)
+

Pθ(n)

(
|G̃
(
x,T (n)

)
−H(x)| > ε

∣∣∣ ∣∣∣T (n)
(m−r+2)

∣∣∣ ≤ Kx

)
Pθ(n)

(∣∣∣T (n)
(m−r+2)

∣∣∣ ≤ Kx

)
(10)

where

Pθ(n)

(
|G̃
(
x,T (n)

)
−H(x)| > ε

∣∣∣ ∣∣∣T (n)
(m−r+2)

∣∣∣ > Kx

)
= Pθ(n)

∣∣∣∣∣∣
∫
Sx

m−r+1∏
i=1

φ(ti)1T (n)
(m−r+2)

(ti)

Φ
(∣∣∣T (n)

(m−r+2)

∣∣∣)− Φ
(
−
∣∣∣T (n)

(m−r+2)

∣∣∣) −
m−r+1∏
i=1

φ(ti)

 dt

∣∣∣∣∣∣ > ε

∣∣∣∣∣∣
∣∣∣T (n)

(m−r+2)

∣∣∣ > Kx


= Pθ(n)

∣∣∣∣∣∣
∫
Sx

m−r+1∏
i=1

φ(ti)

Φ
(∣∣∣T (n)

(m−r+2)

∣∣∣)− Φ
(
−
∣∣∣T (n)

(m−r+2)

∣∣∣) −
m−r+1∏
i=1

φ(ti)

 dt

∣∣∣∣∣∣ > ε

∣∣∣∣∣∣
∣∣∣T (n)

(m−r+2)

∣∣∣ > Kx


= Pθ(n)

∫
Sx

m−r+1∏
i=1

φ(ti)

Φ
(∣∣∣T (n)

(m−r+2)

∣∣∣)− Φ
(
−
∣∣∣T (n)

(m−r+2)

∣∣∣) −
m−r+1∏
i=1

φ(ti)

 dt > ε

∣∣∣∣∣∣
∣∣∣T (n)

(m−r+2)

∣∣∣ > Kx


≤ Pθ(n)

(∫
Sx

(
m−r+1∏
i=1

φ(ti)

Φ(Kx)− Φ(−Kx)
−

m−r+1∏
i=1

φ(ti)

)
dt > ε

∣∣∣∣∣ ∣∣∣T (n)
(m−r+2)

∣∣∣ > Kx

)

= Pθ(n)

(∫
Sx

(
m−r+1∏
i=1

φ(ti)

Φ(Kx)− Φ(−Kx)
−

m−r+1∏
i=1

φ(ti)

)
dt > ε

)

= 1

{(
1

Φ(Kx)− Φ(−Kx)
− 1

)m−r+1 ∫
Sx

m−r+1∏
i=1

φ(ti)dt > ε

}

= 1

{(
1

Φ(Kx)− Φ(−Kx)
− 1

)m−r+1

H(x) > ε

}
.

In the third line, we drop the indicator in the numerator because of the conditioning on∣∣∣T (n)
(m−r+2)

∣∣∣ > Kx. The fourth line follows because the expression within the absolute value is

non-negative almost surely. Note, there exists K0 > 0 such that for all K > K0,

Φ(K)− Φ(−K) >
1

1 +
(

ε
H(x)

) 1
m−r+1

(11)
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and therefore, (
1

Φ(K)− Φ(−K)
− 1

)m−r+1

H(x) <

(
ε

H(x)

)
H(x) = ε.

For any Kx satisfying |ti| < Kx for any t ∈ Sx, any K > Kx also satisfies this condi-
tion. Therefore, we can set Kx sufficiently large such that it satisfies this condition and
Equation (11). Therefore, for such a Kx,

Pθ(n)

(
|G̃
(
x,T (n)

)
−H(x)| > ε

∣∣∣ ∣∣∣T (n)
(m−r+2)

∣∣∣ > Kx

)
= 0 (12)

As a result of Lemma 6 (stated below and proved in Appendix A.4), for any K > 0,

limn→∞ Pθ(n)

(∣∣∣T (n)
(m−r+2)

∣∣∣ > K
)

= 1:

Lemma 6. Under Assumption 1, θ̂
(n)
(m−r+2:m) = T

(n)
(m−r+2:m) satisfies Assumption 3.

Therefore, settingKx in Equation (10) sufficiently large to satisfy Equation (11) and |ti| < Kx

for any t ∈ Sx, and applying Equation (12) and Lemma 6, we have that

lim
n→∞

Pθ(n)

(∣∣∣G̃ (x,T (n)
)
−H(x)

∣∣∣ > ε
)

= 0.

Since ε was arbitrary, we conclude that

G̃
(
x,T (n)

) p→ H(x).

Since x was arbitrary, the above holds for any x ∈ Rf . Combining the above result with
Equation (9) and Lemma 5, we have that, for any x ∈ Rf ,

F̃
(
x,T (n)

) p→ H(x). (13)

To show the final result, we first note that H is strictly increasing and continuous on Rf as a
result of Lemma 4, where f satisfies the conditions of Lemma 4 by Assumption 2. Therefore,
by Lemma 4 and the fact that Equation (13) holds for all x ∈ Rf , H(c∗α) = 1 − α for any
α ∈ (0, 1). Set 0 < ε < min(α, 1− α). Then, H(c∗α+ε) = 1− α− ε and H(c∗α−ε) = 1− α + ε.
Set δ = ε/2 and let γ > 0. Then, by Equation (13), there exists N1 ∈ N such that for all
n ≥ N1,

Pθ(n)

(∣∣∣F̃ (c∗α+ε,T
(n)
)
− (1− α− ε)

∣∣∣ ≤ δ
)
≥ 1− γ

and there exists N2 ∈ N such that for all n ≥ N2,

Pθ(n)

(∣∣∣F̃ (c∗α−ε,T (n)
)
− (1− α + ε)

∣∣∣ ≤ δ
)
≥ 1− γ.
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Let N = max(N1, N2). Then, for n ≥ N , F̃
(
c∗α+ε,T

(n)
)

is contained in the interval [1 −
α− 3ε

2
, 1− α− ε

2
] and F̃

(
c∗α−ε,T

(n)
)

is contained in the interval [1− α+ ε
2
, 1− α+ 3ε

2
] with

probability ≥ 1− γ. Therefore, for any n ≥ N ,

Pθ(n)

(
cα

(
θ̂

(n)
(m−r+2:m),T

(n)
(m−r+2:m)

)
∈ (c∗α+ε, c

∗
α−ε]

)
≥ Pθ(n)

({
F̃
(
c∗α+ε,T

(n)
)
< 1− α

}
∩
{
F̃
(
c∗α−ε,T

(n)
)
≥ 1− α

})
≥ Pθ(n)

({∣∣∣F̃ (c∗α+ε,T
(n)
)
− (1− α− ε)

∣∣∣ ≤ δ
}
∩
{∣∣∣F̃ (c∗α−ε,T (n)

)
− (1− α + ε)

∣∣∣ ≤ δ
})

≥ 1− γ (14)

Since γ was arbitrary, for 0 < ε < min(α, 1− α),

lim
n→∞

Pθ(n)

(
cα

(
θ̂

(n)
(m−r+2:m),T

(n)
(m−r+2:m)

)
∈ (c∗α+ε, c

∗
α−ε]

)
= 1.

Since H is strictly increasing on Rf , c
∗
α is continuous for α ∈ (0, 1). Then, by the continuity

of c∗α and the fact that the above holds for any arbitrary 0 < ε < min(α, 1−α), we conclude
that

cα

(
θ̂

(n)
(m−r+2:m),T

(n)
(m−r+2:m)

)
p→ c∗α.

A.4 Other Helpful Results

Lemma 3. Let (Ω,F ,P) be a probability space. Let An and Bn be a sequence of events in Ω
where limn→∞ P (Bn) = 1 and limn→∞ P (An) = a for some a ∈ [0, 1]. Then, P (An ∩Bn)→ a
and P (An | Bn)→ a.

Proof.

P (An | Bn) =
P (An ∩Bn)

P (Bn)
=

P (An)− P (An ∩Bc
n)

P (Bn)
,

where Bc
n represents the complement of Bn. Since P (Bc

n)→ 0 by assumption,

lim
n→∞

P (An ∩Bc
n) = lim

n→∞
P (An | Bc

n)P (Bc
n)→ 0.

So, we conclude that
P (An)− P (An ∩Bc

n)→ a,

and hence,
P (An | Bn)→ a.

Lemma 4. If X = (X1, ..., Xl) is a vector of continuous random variables supported on Rl

with density pX(x) > 0 for all x ∈ Rl and f : Rl → R is continuously differentiable function
with ∇f 6= 0 except on a set whose closure has measure zero, then the CDF of f(X) is
continuous and strictly increasing on the range of f .
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Proof. Let µ represent the Lebesgue measure on Rl. Let Rf = Range(f). Let x ∈ Rf and
Px := {y : y ∈ f−1(x)}. Let H represent the CDF of f(X). By the continuity of f and the
fact that pX(x) > 0 for all x ∈ Rl, the CDF of f(X) must be strictly increasing. Assume
for the sake of contradiction that the CDF of f(X) is not strictly increasing. Then, since f
is continuous, Rf must be a connected set in R, i.e., Rf must be an interval. Therefore, if
the CDF of f(X) is not strictly increasing, there exists some open interval (a, b) ∈ Rf such
that

0 = P (f(X) ∈ (a, b))

= P
(
X ∈ f−1 ((a, b))

)
=

∫
x∈f−1((a,b))

pX(x)dµ

However,
∫
x∈f−1((a,b))

pX(x)dµ > 0 since pX(x) > 0 for all x ∈ Rl and f−1 ((a, b)) is some

open set in Rl (since for continuous functions, the pre-image of open sets are open sets).
Therefore, the CDF of f(X) must be strictly increasing.

To show continuity, we will show that, for any x ∈ Rf , µ(Px) = 0. If this is true, then, for
any fixed x ∈ Rf ,

0 = P(X ∈ Px) = lim
n→∞

P
(
X ∈ f−1 ((x− 1/n, x+ 1/n])

)
= lim

n→∞
P (f(X) ∈ (x− 1/n, x+ 1/n])

= lim
n→∞

P (f(X) ≤ x+ 1/n)− P (f(X) ≤ x− 1/n)

= lim
n→∞

H(x+ 1/n)−H(x− 1/n)

Let ε > 0. The last line above implies that there exists N sufficiently large such that for all
n ≥ N , H(x+ 1/n)−H(x− 1/n) < ε. So for any 0 < δ < 1/n, if x− δ < x′ < x+ δ, then

|H(x)−H(x′)| ≤ H(x+ δ)−H(x− δ) < H(x+ 1/n)−H(x− 1/n) < ε

where the first inequality follows from the fact that H is a CDF and hence is nondecreasing.
Since ε was arbitrary, H is continuous at x. Since the above holds for any x ∈ Rf , H is
continuous at every x ∈ Rf .

We will now show that, for any x ∈ Rf , µ(Px) = 0. Fix an arbitrary x ∈ Rf . Let
Q = {t ∈ Rl : f is not continuous at t} ∪ {t ∈ Rl : f is not differentiable at t} ∪ {t ∈ Rl :
∇f is not continuous at t} ∪ {t ∈ Rl : ∇f(t) = 0}. By assumption, the closure of Q, which
we denote as Q, has Lebesgue measure 0. Let y ∈ Px \ Q, Since Q is closed, and y is in
the complement of Q, there must exist an open neighborhood of y that is in Rl \ Q. Also
there must be at least one element of ∇f(y) that is not zero, again, because y is in the
complement of Q. Without loss of generality, assume that the last element of ∇f(y) is
nonzero, i.e., ∇f(y)n 6= 0. Then, by the Implicit Function Theorem (Theorem 3.1, Folland
(2002)), there exists open sets Uy ⊂ Rl−1 and Vy ⊂ R such that (y1, ..., yn−1) ∈ Uy and
yn ∈ Vy and there exists a unique function g : Uy → R such that

{y1, ..., yl−1, g(y1, ..., yl−1) : (y1, ..., yl−1) ∈ Uy} = {y ∈ Uy × Vy | f(y) = x}
= Px ∩ (Uy × Vy)
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and g is continuously differentiable. In the above, × represents the Cartesian product. Let
Wy = Uy × Vy. Note, {y1, ..., yl−1, g(y1, ..., yl−1) : (y1, ..., yl−1) ∈ Uy} is the graph of the
continuous function g : Uy → R, and so has Lebesgue measure 0 in Rl (Proposition 6.3, Lee
(2003)). Therefore, ∀y ∈ Px \Q, there exists an open set Wy ⊆ Rn such that

µ (Px ∩Wy) = 0. (15)

We can write

Px \Q =
⋃

y∈Px\Q

(
Px \Q

)
∩Wy =

(
Px \Q

)
∩

 ⋃
y∈Px\Q

Wy

 .

Note,
⋃
y∈Px\QWy is a open cover of Px \ Q ⊆ Rl. By the fact that Rl is second-countable

(Example 1.2, Wedhorn (2016)), and any subspace of Rl is second-countable (Remark 1.3,
Wedhorn (2016)), by Lindelöf’s Covering Theorem (Theorem 15, Kelley (1955)), there exists
a countable subcover of Px \Q, i.e., for some countable set A ∈ Px \Q, Px \Q ⊆

⋃
y∈AWy.

Therefore,

Px \Q ∩

 ⋃
y∈Px\Q

Wy

 = Px \Q ∩

(⋃
y∈A

Wy

)
=
⋃
y∈A

(
Px \Q

)
∩Wy

where

µ

(⋃
y∈A

(
Px \Q

)
∩Wy

)
≤
∑
y∈A

µ
((
Px \Q

)
∩Wy

)
≤
∑
y∈A

µ (Px ∩Wy) = 0.

The last equality follows from Equation (15) and the fact that A is a countable set.

Therefore, µ
(
Px \Q

)
= 0 and

µ(Px) ≤ µ
((
Px \Q

)
∪Q

)
= 0

Since we picked x to be any arbitrary element of Rf , the above is true for all x ∈ Rf .

Lemma 5. Under Assumptions 1 and 3,

PT̃ (n)∼θ̂(n)

(
Bn

(
θ̂(n), T̃ (n)

) ∣∣∣ T̃ (n)
(m−r+2:m) = T

(n)
(m−r+2:m),T

(n)
)

p→ 1.

Proof. Assume, without loss of generality, that θ̂(n) =
(

0, ..., 0, θ̂
(n)
(m−r+2), ..., θ̂

(n)
(m)

)
. Let

Bn

(
θ̂(n), T̃ (n)

)
be the event that

{
T̃

(n)
(m−r+2), ..., T̃

(n)
(m)

}
=
{
T̃

(n)
m−r+2, ..., T̃

(n)
m

}
for T̃ (n) | θ̂(n)

(m−r+2:m) ∼

N (θ̂(n), Im). Thus, PT̃ (n)∼θ̂(n)

(
Bn

(
θ̂(n), T̃ (n)

) ∣∣∣ T̃ (n)
(m−r+2:m) = T

(n)
(m−r+2:m),T

(n)
)

is a random

variable as it is a function of T (n) both through the conditioning event and through θ̂
(n)
(m−r+2:m).
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Let pT̃ (n)∼θ̂(n),T (n)∼θ(n)

(
t
∣∣ T (n)

)
be the PDF of the conditional distribution of T̃

(n)
(m−r+2:m)

given T (n) evaluated at T̃
(n)
(m−r+2:m) = t ∈ Rr−1 and let pT̃ (n)∼θ̂(n),T (n)∼θ(n)

(
t
∣∣∣ Bn

(
θ̂(n), T̃ (n)

)
,T (n)

)
be the analogous PDF of the conditional distribution of T̃

(n)
(m−r+2:m) given T (n) andBn

(
θ̂(n), T̃ (n)

)
,

where T̃ (n) | θ̂(n)
(m−r+2:m) ∼ N (θ̂(n), Im) and T (n) ∼ N (θ(n), Im). Then,

PT̃ (n)∼θ̂(n)

(
Bn

(
θ̂(n), T̃ (n)

) ∣∣∣ T̃ (n)
(m−r+2:m) = T

(n)
(m−r+2:m),T

(n)
)

=

=
pT̃ (n)∼θ̂(n),T (n)∼θ(n)

(
T

(n)
(m−r+2:m)

∣∣∣ Bn

(
θ̂(n), T̃ (n)

)
,T (n)

)
PT̃ (n)∼θ̂(n)

(
Bn

(
θ̂(n), T̃ (n)

) ∣∣∣ T (n)
)

pT̃ (n)∼θ̂(n),T (n)∼θ(n)

(
T

(n)
(m−r+2:m)

∣∣∣ T (n)
) ,

where the numerator

pT̃ (n)∼θ̂(n),T (n)∼θ(n)

(
T

(n)
(m−r+2:m)

∣∣∣ Bn

(
θ̂(n), T̃ (n)

)
,T (n)

)
PT̃ (n)∼θ̂(n)

(
Bn

(
θ̂(n), T̃ (n)

) ∣∣∣ T (n)
)

= pT̃ (n)∼θ̂(n),T (n)∼θ(n)

(
T

(n)
(m−r+2:m)

∣∣∣ T (n)
)
−

pT̃ (n)∼θ̂(n),T (n)∼θ(n)

(
T

(n)
(m−r+2:m)

∣∣∣ Bn

(
θ̂(n), T̃ (n)

)c
,T (n)

)
PT̃ (n)∼θ̂(n)

(
Bn

(
θ̂(n), T̃ (n)

)c ∣∣∣ T (n)
)
.

We are about to show that PT̃ (n)∼θ̂(n)

(
Bn

(
θ̂(n), T̃ (n)

) ∣∣∣ T (n)
)

p→ 1, and therefore, the last

line above (the term being subtracted) converges to 0 in probability, thus giving our final
result.

For K > 0, let J
(n)
K =

{⋂m
i=m−r+2 θ̂

(n)
(i) > K

}
. Set ε > 0. For any K > 0,

Pθ(n)

(∣∣∣1− PT̃ (n)∼θ̂(n)

(
Bn

(
θ̂(n), T̃ (n)

) ∣∣∣ T (n)
)∣∣∣ < ε

)
= Pθ(n)

(
PT̃ (n)∼θ̂(n)

(
Bn

(
θ̂(n), T̃ (n)

) ∣∣∣ T (n)
)
> 1− ε

)
= Pθ(n)

(
PT̃ (n)∼θ̂(n)

(
Bn

(
θ̂(n), T̃ (n)

) ∣∣∣ T (n)
)
> 1− ε

∣∣∣ J (n)
K

)
Pθ(n)

(
J

(n)
K

)
+ Pθ(n)

(
PT̃ (n)∼θ̂(n)

(
Bn

(
θ̂(n), T̃ (n)

) ∣∣∣ T (n)
)
> 1− ε

∣∣∣ J (n)c
K

)
Pθ(n)

(
J

(n)c
K

)
(16)

where the second line follows because PT̃ (n)∼θ̂(n)

(
Bn

(
θ̂(n), T̃ (n)

) ∣∣∣ T (n)
)

is bounded between

0 and 1. First, note that for any K > 0,

lim
n→∞

Pθ(n)

(
J

(n)
K

)
= lim

n→∞
1− Pθ(n)

(
m⋃

i=m−r+2

θ̂
(n)
(i) ≤ K

)

≥ 1− lim
n→∞

m∑
i=m−r+2

Pθ(n)

(
θ̂

(n)
(i) ≤ K

)
= 1 (17)

where the last line follows by Assumption 3. We will now show that, for sufficiently large K,
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Pθ(n)

(
PT̃ (n)∼θ̂(n)

(
Bn

(
θ̂(n), T̃ (n)

) ∣∣∣ T (n)
)
> 1− ε

∣∣∣ J (n)
K

)
= 1 for any n. For K > 0, let

X
(K)
i

i.i.d.∼ N (K, 1), i = 1, ..., r − 1 independent of T (n). Then,

Pθ(n)

(
PT̃ (n)∼θ̂(n)

(
Bn

(
θ̂(n), T̃ (n)

) ∣∣∣ T (n)
)
> 1− ε

∣∣∣ J (n)
K

)
= Pθ(n)

(
PT̃ (n)∼θ̂(n)

(
max

j=1,...,m−r+1

∣∣∣T̃ (n)
j

∣∣∣ < min
i=m−r+2,...,m

∣∣∣T̃ (n)
i

∣∣∣ ∣∣∣∣ T (n)

)
> 1− ε

∣∣∣∣ J (n)
K

)
≥ Pθ(n)

(
PT̃ (n)∼θ̂(n)

(
max

j=1,...,m−r+1

∣∣∣T̃ (n)
i

∣∣∣ < min
i=1,...,r−1

∣∣∣X(K)
i

∣∣∣ ∣∣∣∣ T (n)

)
> 1− ε

∣∣∣∣ J (n)
K

)
= P

(
P
(

max
j=1,...,m−r+1

∣∣∣T̃ (n)
i

∣∣∣ < min
i=1,...,r−1

∣∣∣X(K)
i

∣∣∣) > 1− ε
)

= 1

{
P
(

max
j=1,...,m−r+1

∣∣∣T̃ (n)
j

∣∣∣ < min
i=1,...,r−1

∣∣∣X(K)
i

∣∣∣) > 1− ε
}

(18)

where the third line holds because for independent random variables Zj
i.i.d.∼ N (0, 1), j =

1, ...,m− r + 1 and Yi ∼ N (µi, 1), i = 1, ..., r − 1 where all µi > K,

P
(

max
j=1,...,m−r+1

|Zj| < min
i=1,...,r−1

∣∣∣X(K)
i

∣∣∣) < P
(

max
j=1,...,m−r+1

|Zj| < min
i=1,...,r−1

|Yi|
)
.

In the second to last line and onward, we drop the conditioning events and the θ(n) and θ̂(n)

subscripts because the T̃
(n)
j ’s, which are i.i.d. standard normally distributed regardless of n,

and the X
(K)
i ’s do not depend on T (n), and hence, do not depend on θ̂

(n)
(m−r+2:m) and θ(n).

Let LK−
√
K =

{
mini=1,...,r−1

∣∣∣X(K)
i

∣∣∣ > K −
√
K
}

. Then,

P
(

max
j=1,...,m−r+1

∣∣∣T̃ (n)
j

∣∣∣ < min
i=1,...,r−1

∣∣∣X(K)
i

∣∣∣)
= P

(
max

j=1,...,m−r+1
|T̃ (n)
j | < min

i=1,...,r−1

∣∣∣X(K)
i

∣∣∣ ∣∣∣∣ LK−√K)P
(
LK−

√
K

)
+ P

(
max

j=1,...,m−r+1

∣∣∣T̃ (n)
j

∣∣∣ < min
i=1,...,r−1

∣∣∣X(K)
i

∣∣∣ ∣∣∣∣ LcK−√K)P
(
Lc
K−
√
K

)
where

P
(
LK−

√
K

)
=
(

1− Φ
(
−
√
K
)

+ Φ
(
−2K +

√
K
))r−1

.

and

P
(

max
j=1,...,m−r+1

∣∣∣T̃ (n)
j

∣∣∣ < min
i=1,...,r−1

∣∣∣X(K)
i

∣∣∣ ∣∣∣∣ LK−√K) ≥ P
(

max
j=1,...,m−r+1

∣∣∣T̃ (n)
j

∣∣∣ < K −
√
K

∣∣∣∣ LK−√K)
= P

(
max

j=1,...,m−r+1

∣∣∣T̃ (n)
j

∣∣∣ < K −
√
K

)
=
(

Φ
(
K −

√
K
)
− Φ

(
−(K −

√
K)
))m−r+1

.
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As K gets arbitrarily large,
(

1− Φ
(
−
√
K
)

+ Φ
(
−2K +

√
K
))r−1

→ 1 and(
Φ
(
K −

√
K
)
− Φ

(
−(K −

√
K)
))m−r+1

→ 1 and therefore,

P
(

max
j=1,...,m−r+1

∣∣∣T̃ (n)
j

∣∣∣ < min
i=1,...,r−1

∣∣∣X(K)
i

∣∣∣)→ 1.

The above implies that there exists Kε > 0 such that for any K > Kε,

P
(

maxj=1,...,m−r+1

∣∣∣T̃ (n)
j

∣∣∣ < mini=1,...,r−1

∣∣∣X(K)
i

∣∣∣) > 1− ε. So, for K > Kε,

1

{
P
(

max
j=1,...,m−r+1

∣∣∣T̃ (n)
j

∣∣∣ < min
i=1,...,r−1

∣∣∣X(K)
i

∣∣∣) > 1− ε
}

= 1

and by Equation (18),

Pθ(n)

(
PT̃ (n)∼θ̂(n)

(
Bn

(
θ̂(n), T̃ (n)

) ∣∣∣ T (n)
)
> 1− ε

∣∣∣ J (n)
K

)
= 1 (19)

Setting K > Kε in Equation (16), by Equation (19) and the fact that Equation (17) holds
for any K > 0, we have that

lim
n→∞

Pθ(n)

(∣∣∣1− PT̃ (n)∼θ̂(n)

(
Bn

(
θ̂(n), T̃ (n)

) ∣∣∣ T (n)
)∣∣∣ < ε

)
= 0.

Since ε was arbitrary, we conclude that

PT̃ (n)∼θ̂(n)

(
Bn

(
θ̂(n), T̃ (n)

) ∣∣∣ T (n)
)

p→ 1.

Lemma 6. Under Assumption 1, θ̂
(n)
(m−r+2:m) = T

(n)
(m−r+2:m) satisfies Assumption 3.

Proof. Assume without loss of generality that θ(n) =
(

0, ...0, θ
(n)
m−r+2, ..., θ

(n)
m

)
where θ

(n)
i →

∞. Fix K > 0 and i ∈ {m−r+2, ...,m}. We will show that limn→∞ Pθ(n)

(∣∣∣T (n)
(i)

∣∣∣ > K
)

= 1.

lim
n→∞

Pθ(n)

(∣∣∣T (n)
(i)

∣∣∣ > K
)

= lim
n→∞

Pθ(n)

(∣∣∣T (n)
(i)

∣∣∣ > K
∣∣∣ Bn

(
θ(n),T (n)

))
Pθ(n)

(
Bn

(
θ(n),T (n)

))
+

Pθ(n)

(∣∣∣T (n)
(i)

∣∣∣ > K
∣∣∣ Bn

(
θ(n),T (n)

)c)Pθ(n)

(
Bn

(
θ(n),T (n)

)c)
= lim

n→∞
Pθ(n)

(∣∣∣T (n)
(i)

∣∣∣ > K
∣∣∣ Bn

(
θ(n),T (n)

))
≥ lim

n→∞
Pθ(n)

(∣∣∣T (n)
(m−r+2)

∣∣∣ > K
∣∣∣ Bn

(
θ(n),T (n)

))
= lim

n→∞
Pθ(n)

(
m⋂

i=m−r+2

{∣∣∣T (n)
i

∣∣∣ > K
} ∣∣∣∣∣ Bn

(
θ(n),T (n)

))
= 1,
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where the third line follows from the fact that limn→∞ Pθ(n)

(
Bn

(
θ(n),T (n)

))
= 1 as shown in

Equation (8) of Lemma 1, the fifth line follows because of the conditioning on Bn

(
θ(n),T (n)

)
,

and the last line follows from applying Lemma 3 with Equation (6) and Equation (8) of
Lemma 1. Since we picked an arbitrary i and K, we can conclude that for any K > 0 and

i = m− r + 2, ...,m, limn→∞ Pθ(n)

(∣∣∣T (n)
(i)

∣∣∣ > K
)

= 1.

B Further Computational Details

B.1 Further Details on Computing cPCH p-values

Recall from Section 2.5 that the cPCH p-value can be represented as:

Pθ̂
(
f(T(1:m−r+1)) ≥ fobs

∣∣ T(m−r+2:m)

)
=

m!
(m−r+1)!∑
`=1

Pθ̂
(
B`

∣∣ T(m−r+2:m)

)
Pθ̂
(
f(T(1:m−r+1)) ≥ fobs

∣∣ B`,T(m−r+2:m)

)
.

where we let θ̂ = (0, ..., 0, T(m−r+2), ..., T(m)). Computing this sum can be split into two parts:

1. Deriving analytic expressions of the mixture weights Pθ̂
(
B`

∣∣ T(m−r+2:m)

)
;

2. Computing the mixture components by sampling from the distribution of f
(
T(1:m−r+1)

)
|

B`,T(m−r+2:m).

We now provide the computational details for the above parts. Without loss of generality,
we illustrate using S1 = ({T1, ..., Tm−r+1},Tm−r+2:m) and

B1 =
{

(S1 = ({T(1), ..., T(m−r+1)},T(m−r+2:m))
}
.

Analytical expressions of the mixture weights.

As mentioned in Section 2.5, we can express the mixture weights Pθ̂
(
B`

∣∣ T(m−r+2:m)

)
us-

ing only evaluations of the standard normal cumulative distribution Φ and density φ. For
example, given the observed T(m−r+2:m) = tm−r+2:m, we have 4

Pθ̂
(
B1

∣∣ T(m−r+2:m) = tm−r+2:m

)
=

Pθ̂
(
B1,T(m−r+2:m) = tm−r+2:m

)
Pθ̂
(
T(m−r+2:m) = tm−r+2:m

)
=

Pθ̂ (|T1| < |tm−r+2|, ..., |Tm−r+1| < |tm−r+2|, Tm−r+2 = tm−r+2, ..., Tm = tm)

Pθ̂
(
T(m−r+2:m) = tm−r+2:m

)
=

∏m−r+1
h=1 Pθ̂ (|Th| < |tm−r+2|)

∏m
j=m−r+2 Pθ̂ (Tj = tj)

Pθ̂
(
T(m−r+2:m) = tm−r+2:m

) , (20)

4We employ a slight abuse of notation by writing Pθ̂(T(m−r+2:m) = tm−r+2:m) to denote the PDF of
T(m−r+2:m) evaluated at tm−r+2:m and Pθ̂(Tj = tj) to denote the PDF of Tj evaluated at tj , both under the

model T ∼ N (θ̂, Im).
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where

Pθ̂ (|Th| < |tm−r+2|) = Φ(|tm−r+2|)− Φ(−|tm−r+2|), h = 1, ...,m− r + 1,

Pθ̂ (Tj = tj) = φ(tj − θ̂j), j = m− r + 2, ...,m,

Pθ̂
(
T(m−r+2:m) = tm−r+2:m

)
=

m!
(m−r+1)!∑
`=1

Pθ̂
(
B`,T(m−r+2:m) = tm−r+2:m

)
.

The summands in the last line have the same form as the numerator in Equation (20), and
hence can be computed in the same way, although the means of T1:m−r+1 above are all 0
since we calculate the above probability for B1. The means will be different for different B`

since, conditional on B`, we assume a particular subset of T1:m correspond to T(1:m−r+1).

Distributions of the mixture components.

By the conditioning on B1, Pθ̂
(
f(T(1:m−r+1)) ≥ fobs

∣∣ B1,T(m−r+2:m)

)
=

Pθ̂
(
f(T1:m−r+1) ≥ fobs

∣∣ B1,T(m−r+2:m)

)
for any f that is permutation invariant (e.g., Fisher’s,

Simes’, or Bonferroni’s). Note, we can exactly specify the distribution of T1, .., Tm−r+1 con-
ditional on B1 and T(m−r+2:m):

T1, ..., Tm−r+1 | B1,T(m−r+2:m)
i.i.d.∼ Trunc–Norm(0, 1, T(m−r+2)),

where Trunc–Norm(µ, 1, t) is the truncated normal distribution with location µ and scale 1
truncated at |t| and −|t|. Therefore, we can utilize standard sampling procedures for trun-

cated normal distributions to generate N independent copies
{
T̃

(k)
1

}N
k=1

from the distribution

of T1, ..., Tm−r+1 | B1,T(m−r+2:m), where the “1” subscript on T̃
(k)
1 denotes the conditioning

on B1. Let X
(k)
1 = f

(
T̃

(k)
1

)
. Then, we estimate Pθ̂

(
f(T(1:m−r+1)) ≥ fobs

∣∣ B1,T(m−r+2:m)

)
using

g

(
fobs,

{
X

(k)
1

}N
k=1

)
=

1

N + 1

(
1 +

N∑
k=1

1

{
X

(k)
1 ≥ fobs

})
.

We can apply this logic to each B` to get estimates for each mixture component.

B.1.1 Calculating cPCH p-values in the r = m = 2 setting

In the r = m = 2 setting, cPCH p-values can be calculated without sampling using the
following derivation. Since r = m = 2, S = {{{T1}, T2}, {{T2}, T1}}. As in Section 2.5, let
S` be the `th set in S and

B` = {S` = ({T(1)}, T(2))}.

Then, given the observed T(1) = f obs,

Pθ̂
(
T(1) > f obs

∣∣ T(2)

)
= Pθ̂

(
B1

∣∣ T(2)

)
Pθ̂
(
T(1) ≥ f obs

∣∣ T(2), B1

)
+ Pθ̂

(
B2

∣∣ T(2)

)
Pθ̂
(
T(1) ≥ f obs

∣∣ T(2), B2

)
, (21)
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where θ̂ = (0, T(2)). The mixture weights Pθ̂
(
Bi | T(2)

)
can be calculated as in Equation (20).

For the r = m = 2 setting, we can derive the analytic form of the mixture components
Pθ̂
(
T(1) ≥ f obs | T(2), B1

)
as well. For example, conditional on B1,

Pθ̂
(
T(1) ≥ f obs

∣∣ T(2), B1

)
=

Pθ̂
(
|f obs| ≤ |T1| ≤ |T(2)|

∣∣ T(2)

)
Pθ̂
(
|T1| ≤ |T(2)|

∣∣ T(2)

) =
2
(
Φ
(
|T(2)|

)
− Φ

(
|f obs|

))
Φ(|T(2)|)− Φ(−|T(2)|)

.

(22)

Analogously, conditional on B2, we get

Pθ̂
(
T(1) ≥ f obs

∣∣ T(2), B2

)
=

Pθ̂
(
|f obs| ≤ |T2| ≤ |T(2)|

∣∣ T(2)

)
Pθ̂
(
|T2| ≤ |T(2)|

∣∣ T(2)

)
=

(
Φ
(
|T(2)| − θ̂2

)
− Φ

(
|f obs| − θ̂2

))
+
(

Φ
(
−|f obs| − θ̂2

)
− Φ

(
−|T(2)| − θ̂2

))
Φ(|T(2)| − θ̂2)− Φ(−|T(2)| − θ̂2)

. (23)

Plugging in Equation (22) and (23) to Equation (21) gives the final form for Pθ̂
(
T(1) ≥ f obs

∣∣ T(2)

)
.

Note, the same strategy could be applied for r = m, but we do not pursue this idea here.

B.2 The SGD Algorithm for Quantifying Maximum Type I Error

In this section, we give the computation details of SGD analysis for Type I error inflation.
Recall the definition of E(θ) in Equation (2),

E(θ) = Pθ
(
f(T(1:m−r+1)) > cα

(
T(m−r+2:m),T(m−r+2:m)

))
=

∫
Rm

(
1
{
f(T(1:m−r+1)) > cα

(
T(m−r+2:m),T(m−r+2:m)

)} m∏
i=1

φ(Ti − θi)

)
dTi.

We simplify the notation of the cPCH test in Definition 2 and write it as a function of the
data T i.e., ϕcPCH

α (T ) := 1
{
f(T(1:m−r+1)) > cα

(
T(m−r+2:m),T(m−r+2:m)

)}
. Expressing E(θ)

in terms of the integral

E(θ) =

∫
Rm

ψ(t)
m∏
i=1

φ(ti − θi)dti

and noticing the fact that d
dθi
φ(ti − θi) = −(ti − θi)φ(ti − θi), we have the gradient of E(θ)

equals
∇E(θ) = Eθ[(T − θ)ψ(T )] = E[Zψ(Z + θ)],

where Z = (T − θ)
d∼ N (0, Im). It can be unbiasedly estimated by

1

n

n∑
i=1

Ziψ(Zi + θ)
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with n i.i.d. samples from N (0, Im) and we can choose the number of repeated samples n
to be sufficiently large.

Due to the symmetry of the problem, we note max
θ∈Θ

r/m
0

E(θ) = maxθ∈Θcone
0

E(θ) where

Θcone
0 = {θ ∈ Θ

r/m
0 : θ1 ≥ · · · θr−1 ≥ 0 = θr = · · · = θm} is a convex cone and its volume

is only 1

( m
r−1)(r−1)!2r−1

of Θ
r/m
0 . Therefore, restricting θ in the much smaller searching space

Θcone
0 will speed up the convergence to a local maximum. With such a constrained parameter

space of θ, we project via isotonic regression (Han et al., 2017) to ensure the move at each
step is still within Θcone

0 . We also make use of random initializations to help adequately
search the parameter space for estimating the global maximum sup

θ∈Θ
r/m
0

E(θ). The whole

procedure is spelled out in Algorithm 1. For the results in Table 1, we use an exponentially
decaying learning rate and terminate the algorithm after 200 batches.

Algorithm 1 SGD estimation of the cPCH test’s maximum Type I error

Input: m, r, f,N , a level α, the number of repeated samples n, the maximum number of
batches T , the learning rate γ.

1: draw θ1 from N (0, σ2) for some σ, then draw θk from Trunc–Norm(0, σ2, |θk−1|) for
k = 2, · · · , r − 1; set θk to be its absolute value when k < r and 0 otherwise.

2: repeat
3: sample i.i.d. samples {Zi}ni=1 from N (0, Im).
4: run conditional PCH testing on data {Zi + θ}ni=1 and obtain {ψ(Zi + θ)}ni=1.
5: compute the gradient estimate: g ← n−1

∑n
i=1Ziψ(Zi + θ).

6: update θ ← θ − γg
7: reset θ to be the projection of θ on Θcone

0 .
8: until t = T or reaching the stopping criterion

Output: estimate of the maximum Type I error: n−1
∑n

i=1 ψ(Zi + θ) for θ ∈ Θ
r/m
0 .

C Further Details on Section 3

C.1 Further Details on Methods under Comparison in Section 3.3

For the PCH multiple testing approaches under consideration (DACT, HDMT, AdaFilter,
and DHH), all FDR guarantees hold under the assumption that the pij are independent, or
some mild relaxation of it (e.g., AdaFilter allows weak dependence between the base p-values
for their asymptotic results). Both DACT and HDMT guarantee FDR control as M → ∞
under specific regularity conditions, which are primarily set to guarantee that the estimators
for the proportions of each null configuration are consistent. By the linear structural model
commonly used for causal mediation analysis (Baron and Kenny, 1986), both DACT and
HDMT assume that the base test statistics are normally distributed and independent across
m.

Under mild regularity conditions, AdaFilter guarantees FDR control as M →∞. For finite
M and nominal FDR level q, AdaFilter guarantees FDR control at level qC(M) where
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C(M) =
∑M

j=1
1
j
, when all pij are independent.

DHH guarantees FDR control for finite M when the filtering threshold τ is fixed and the
PCH p-value pr/m used has uniform validity : for any θ ∈ Θ

r/m
0 and α ∈ [0, τ ],

Pθ
(
pr/m < α

)
Pθ (pr/m < τ)

≤ α

τ
.

They show that the standard Fisher, Simes, and Bonferroni PCH p-values satisfy uniform
validity. Dickhaus et al. (2021) also provides an algorithm for selecting the threshold τ in a
data-adaptive way, which, under certain conditions, guarantees asymptotic FDR control. We
select τ = 0.1 since, as shown in the empirical simulations and real data example presented in
Dickhaus et al. (2021), DHH with τ = 0.1 has similar power to DHH with the data-adaptive
threshold in many settings.

Finally, we discuss the assumptions necessary for FDR control for BH (Benjamini and
Hochberg, 1995), Storey’s procedure (Storey, 2002), and AdaPT–GMM (Chao and Fithian,
2021), the multiple testing procedures used in combination with individual PCH p-values.
Storey’s procedure and AdaPT–GMM share the assumption that the individual PCH p-
values are independent, while BH only requires positive regression dependency on a sub-
set. AdaPT–GMM requires the additional assumption that the null p-values have a non-
decreasing density. The standard PCH p-values and DHH-adjusted PCH p-values satisfy
this condition, while DACT and cPCH p-values are not guaranteed to do so. However, since
null cPCH p-values are nearly uniform, the non-decreasing density assumption is at least
justified approximately for the cPCH test. Additionally, we find in our empirical simulations
that FDR control is maintained when using cPCH p-values with AdaPT–GMM; see Figure 6
in Section 3.3.2.
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C.2 Additional Simulation Results

C.2.1 Type I error of single PCH testing results for m = 4

Figure 8: Type I error of the cPCH test across all null cases (r? < r) at nominal level
α = 0.05 (dotted black line) for m = 4. Recall that the Type I error of the cPCH Oracle test
is exactly equal to the nominal level. Each point represents the proportion of cPCH p-values
below α over 5000 replicates of the data generating procedure outlined in Section 3.1 for
each (r?, r, θ) triplet. Error bars depict ±2 standard errors.

53



C.2.2 Additional single PCH testing results for various m

Figure 9: Type I error of the cPCH test across all null cases (r? < r) at nominal level
α = 0.05 (dotted black line) for m = 3. Recall that the Type I error of the cPCH Oracle test
is exactly equal to the nominal level. Each point represents the proportion of cPCH p-values
below α over 5000 replicates of the data generating procedure outlined in Section 3.1 for
each (r?, r, θ) triplet. Error bars depict 2 standard errors.
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Figure 10: Power of the cPCH test across all alternative cases (r? ≥ r) at nominal level
α = 0.05 (dotted black line) for m = 3. Each point represents the proportion of cPCH
p-values below α over 5000 replicates of the data generating procedure outlined in Section
3.1 for each (r?, r, θ) triplet. Error bars depict 2 standard errors.

Figure 11: Type I error of the cPCH test across all null cases (r? < r) at nominal level
α = 0.05 (dotted black line) for m = 5. Recall that the Type I error of the cPCH Oracle test
is exactly equal to the nominal level. Each point represents the proportion of cPCH p-values
below α over 5000 replicates of the data generating procedure outlined in Section 3.1 for
each (r?, r, θ) triplet. Error bars depict ±2 standard errors.
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Figure 12: Power of the cPCH test across all alternative cases (r? ≥ r) at nominal level
α = 0.05 (dotted black line) for m = 5. Each point represents the proportion of cPCH p-
values below α over 5000 replicates of the data generating procedure outlined in Section 3.1
for each (r?, r, θ) triplet. Error bars depict ±2 standard errors.

Figure 13: Each point represents the log10 of the average time in milliseconds to compute a
single cPCH p-value (as described in Section 2.5) with Fisher’s combining function over 100
replicates for each combination of m, r, and N . We use Fisher’s combining function since
we found that the computation times were similar across Fisher’s, Simes’, and Bonferroni’s
combining functions. The computation times for r = m = 2 are especially small (≈ 1 mil-
lisecond) because we are able to compute cPCH p-values in this case analytically using only
evaluations of the standard normal CDF and PDF, which can be computed very efficiently;
see Appendix B.1 for further details.
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C.2.3 qq-plot Results for r = m = 3

Figure 14: qq-plot of the empirical cPCH p-value density under various θ ∈ Θ
3/3
0 com-

pared with the theoretical Unif[0, 1] distribution. Recall that when r = m, Bonferroni’s,
Simes’, and Fisher’s combining functions are all equivalent. Each line represents the matched
quantiles of the Unif[0, 1] density (x–coordinate) and the empirical cPCH p-value density
(y–coordinate) for a given θ estimated using 10, 000 independent replicates for the Monte
Carlo sampling scheme described in Section 2.4.2.
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C.2.4 Additional PCH Multiple Testing Results

Figure 15: False Discovery Rate (FDR) results corresponding to Section 3.3.3 where all
methods are implemented at nominal level q = 0.1 (dotted black line). Each point represents
the average proportion of rejected PCH’s which are null over 1000 independent replicates of
the data generating procedure described in Section 3.3.3 for a given θ. Standard errors were
all less than 0.008.
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(a) (b)

Figure 16: Each point represents a (covariate, p-value) pair generated using the data gener-
ating scheme described in Section 3.3.2 with θ = 3. The p-values rejected by AdaPT–GMM
are in red. There are much fewer DHH p-values than cPCH p-values because AdaPT–GMM
is applied to the DHH p-values after filtering. As indicated by the pattern of rejections,
cPCH with AdaPT–GMM easily detects that the covariate being above 0.95 is highly infor-
mative of the PCH being in the alternative, which accurately reflects the true data generating
procedure. DHH with AdaPT–GMM does not capture this trend as clearly.

C.2.5 AdaPT–GMM Rejections for cPCH and DHH
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C.2.6 Additional Simulations Comparing cPCH with Empirical Bayes Methods

We first compare the Type I error of the cPCH test in the r = m = 2 setting with the
Empirical Bayes methods DACT (Liu et al., 2022). We focus on the r = m = 2 setting since
DACT is only applicable in this setting and we exclude HDMT for our Type I error analysis
because HDMT does not produce individual PCH p-values.

We simulated data using the following θ = (θ1, θ2) ∈ Θ
r/m
0 : (0, 0), (0, 1), (0, 2), (0, 3), (0, 4).

For each choice of θ ∈ Θ
r/m
0 above, we independently draw T1 ∼ N (θ1j, 1) and T2 ∼

N (θ2j, 1), j = 1, ...,M where we set M = 100, 1000, 5000.

The cPCH p-values are i.i.d. across the M draws, so any variation in the estimated Type
I error for the cPCH test across M only occurs as a result of the random sampling. Since
DACT controls Type I error asymptotically, we expect the estimated Type I error of DACT
to vary with M not just as a result of the random sampling, but also as a result of DACT’s
asymptotic Type I error control guarantees.

Table 5 shows the estimated Type I error of the cPCH test, DACT, and Max-P test at
nominal level α = 0.1 over 100 independent replicates of the above data generating procedure.
Note, DACT does not have Type 1 error control in the (0, 4) case regardless of M .

θ (0,0) (0,1) (0,2) (0,3) (0,4)

M = 100 cPCH 0.091 0.107 0.112 0.109 0.103
Max-P 0.009 0.026 0.063 0.096 0.101
DACT 0.098 0.071 0.052 0.107 0.148

M = 1000 cPCH 0.092 0.104 0.113 0.108 0.101
Max-P 0.010 0.026 0.063 0.093 0.099
DACT 0.098 0.059 0.041 0.096 0.177

M = 5000 cPCH 0.091 0.097 0.105 0.101 0.010
Max-P 0.010 0.026 0.064 0.091 0.099
DACT 0.097 0.050 0.028 0.078 0.238

Table 5: Type I Error estimated over 100 independent replicates of the data generating
process described in Appendix C.2.6 using level α = 0.1.

In a multiple testing setting, we compared the FDR and power of the cPCH test in combi-
nation with BH, DACT in combination with BH, and HDMT. For the r = m = 2 case there
are only three possible configurations:

1. Both θ1 and θ2 are non-zero.

2. One of θ1, θ2 is zero and the other is non-zero.

3. Both θ1 and θ2 are zero.

with configurations 1 and 2 belonging to the null, and configuration 3 belonging to the
alternative. Let π00, π01, π11 be the true proportion of PCH’s in each of the three configu-
rations respectively across M total PCH’s. As in Dai et al. (2020), we simulate the data
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(T1,j, T2,j)
M
j=1 where π11M of the total M pairs (T1,j, T2,j) are generated using T1,j ∼ N (θ, 1),

T2,j ∼ N (θ, 1), π01M of the total M pairs are generated using T1,j ∼ N (0, 1), T2,j ∼ N (θ, 1)

and π00M of the total M pairs are generated using Ti,j
i.i.d.∼ N (0, 1), i = 1, 2. We set the

following configurations for π00, π01 and π11,

• Dense Null: π00 = 0.6, π01 = 0.4, π11 = 0

• Sparse Null: π00 = 0.9, π01 = 0.1, π11 = 0

• Complete Null: π00 = 1, π01 = 0, π11 = 0

• Dense Alternative: π00 = 0.4, π01 = 0.4, π11 = 0.2

• Sparse Alternative: π00 = 0.88, π01 = 0.1, π11 = 0.02

cPCH with BH, DACT with BH, and HDMT are all performed at nominal FDR level q =
0.1. Table 6 shows the estimated FDR and power results across the different alternative
scenarios and Table 7 shows the estimated FDR results across the different null scenarios for
M = 100, 500, 5000 and θ = 2. As shown by the highlighted rows, the DACT and HDMT
methods do not reliably control FDR across various settings.
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FDR Power

Dense alternative π11 = 0.2

M = 100 cPCH-BH 0.094 0.038
DACT 0.036 0.075
HDMT 0.107 0.172

MaxP-BH 0.007 0.014
M = 1000 cPCH-BH 0.080 0.008

DACT 0.076 0.111
HDMT 0.086 0.117

MaxP-BH 3e-04 0.002
M = 5000 cPCH-BH 0.085 0.003

DACT 0.142 0.220
HDMT 0.086 0.111

MaxP-BH 0.000 2e-04

Sparse alternative π11 = 0.02

M = 100 cPCH-BH 0.073 0.023
DACT 0.174 0.17
HDMT 0.159 0.196

MaxP-BH 0.001 0.01
M = 1000 cPCH-BH 0.091 0.004

DACT 0.304 0.200
HDMT 0.119 0.077

MaxP-BH 0.000 0.001
M = 5000 cPCH-BH 0.0907 0.001

DACT 0.435 0.269
HDMT 0.096 0.044

MaxP-BH 0.000 1e-04

Table 6: FDR estimated over 1000 independent replicates of the data generating process
described in Appendix C.2.6 for various M using level q = 0.1. BH was used with the cPCH
and the Max-P p-values. All SEs were ≤ 0.004 for M = 5000, ≤ 0.009 for M = 1000, and
≤ 0.010 for M = 100. FDR values above q + 2SE’s are highlighted.
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FDR

Dense null π00 = 0.6

M = 100 cPCH-BH 0.111
DACT 0.252
HDMT 0.136

MaxP-BH 0.005
M = 1000 cPCH-BH 0.101

DACT 0.712
HDMT 0.099

MaxP-BH 0.001
M = 5000 cPCH-BH 0.11

DACT 0.982
HDMT 0.104

MaxP-BH 0

Sparse null π00 = 0.9

M = 100 cPCH-BH 0.097
DACT 0.214
HDMT 0.196

MaxP-BH 0.001
M = 1000 cPCH-BH 0.09

DACT 0.392
HDMT 0.159

MaxP-BH 0.000
M = 5000 cPCH-BH 0.104

DACT 0.728
HDMT 0.123

MaxP-BH 0.000

Complete null π00 = 1

M = 100 cPCH-BH 0.083
DACT 0.094
HDMT 0.100

MaxP-BH 0.000
M = 1000 cPCH-BH 0.088

DACT 0.091
HDMT 0.092

MaxP-BH 0.000
M = 5000 cPCH-BH 0.098

DACT 0.127
HDMT 0.092

MaxP-BH 0.000

Table 7: FDR and power estimated over 1000 independent replicates of the data generating
process described in Appendix C.2.6 for various M using level q = 0.1. All SEs were ≤ 0.007
for M = 5000, ≤ 0.015 for M = 1000, and ≤ 0.013 for M = 100. FDR values above q+2SE’s
are highlighted. 63



D Further Details on DMD Data Analysis

D.1 Standard PCH Testing Analysis of DMD data

Single PCH Test f MT Procedure r = 2 r = 3 r = 4

cPCH Fisher Storey 497 193 15
cPCH Fisher BH 425 167 12
cPCH Simes Storey 409 165 15
cPCH Simes BH 340 114 12
cPCH Bonferroni Storey 400 141 15
cPCH Bonferroni BH 336 109 12
Standard Fisher Storey 364 128 9
Standard Fisher BH 359 128 9
Standard Simes Storey 364 128 9
Standard Simes BH 359 128 9
Standard Bonferroni Storey 364 128 9
Standard Bonferroni BH 359 128 9
Standard Fisher DHH-BH 284 115 9
Standard Fisher DHH-Storey 382 151 21
Standard Simes DHH-BH 284 115 9
Standard Simes DHH-Storey 382 151 21
Standard Bonferroni DHH-BH 284 115 9
Standard Bonferroni DHH-Storey 382 151 21

AdaFilter 380 217 73

Table 8: The number of rejections for each method across the M = 1871 unique genes
shared among the m = 4 DMD studies described in Section 4, all at nominal FDR level
q = 0.1. AdaFilter and DHH–Storey tend to outperforms the cPCH test when r = 3, 4 while
the cPCH-based methods tend to outperform AdaFilter, DHH–Storey, and DHH–BH when
r = 2.

D.2 Discovered Genes from Follow-up Analysis
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Gene Symbol cPCH p-value Gene Function
ART3 0.00011 protein ADP-ribosylation
CFHR1 0.00075 complement activation
CHRNA1 2e-05 cation transmembrane transport/muscle cell cellular home-

ostasis
DAB2 1e-05 Wnt signaling pathway/apoptotic process
EEF1A1 2e-05 cellular response to epidermal growth factor stimu-

lus/regulation of chaperone-mediated autophagy
EZR 3e-05 actin cytoskeleton reorganization/actin filament bundle as-

sembly
HLA-DMB 0.00045 MHC class II protein complex assembly/antigen process-

ing and presentation of exogenous peptide antigen via MHC
class II

HLA-DRA 0.00062 T cell costimulation/T cell receptor signaling pathway
LAMB2 0.00034 Schwann cell development/astrocyte development
LAPTM5 5e-05 transport
MYH3 1e-05 ATP metabolic process/actin filament-based movement
MYH8 1e-05 ATP metabolic process/muscle contraction
MYL4 1e-05 cardiac muscle contraction/muscle filament sliding
MYL5 3e-05 muscle contraction/regulation of muscle contraction
S100A10 1e-05 establishment of protein localization to plasma mem-

brane/membrane budding
S100A11 2e-05 cell-cell adhesion/negative regulation of DNA replication
S100A13 2e-05 cytokine secretion/interleukin-1 alpha secretion
S100A4 0.00041 epithelial to mesenchymal transition/positive regulation of

I-kappaB kinase/NF-kappaB signaling
TMSB10 0.0001 actin filament organization

Table 9: A subset of selected genes from applying the cPCH test for r = m = 3 using
Fisher’s combining function with Storey’s procedure at nominal level q = 0.1 on the follow-
up study design described in Section 4 screening on GDS1956 then using the remaining
studies (GDS214, GDS563, GDS3027) as follow-up studies. As desired, many of the genes
discovered all correspond to various muscle functions. Notably, the genes MYH3, MYH8,
MYL4, and MYL5 are known genetic markers for DMD.
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