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Abstract— In this paper we provide a thorough, rigorous the-
oretical framework to assess optimality guarantees of sampling-
based algorithms for drift control systems: systems that, loosely
speaking, can not stop instantaneously due to momentum. We
exploit this framework to design and analyze a sampling-based
algorithm (the Differential Fast Marching Tree algorithm) that
is asymptotically optimal, that is, it is guaranteed to converge,
as the number of samples increases, to an optimal solution. In
addition, our approach allows us to provide concrete bounds
on the rate of this convergence. The focus of this paper is on
mixed time/control energy cost functions and on linear affine
dynamical systems, which encompass a range of models of
interest to applications (e.g., double-integrators) and represent a
necessary step to design, via successive linearization, sampling-
based and provably-correct algorithms for non-linear drift
control systems. Our analysis relies on an original perturbation
analysis for two-point boundary value problems, which could
be of independent interest.

I. INTRODUCTION

A key problem in robotics is how to compute an obstacle-
free and dynamically-feasible trajectory that a robot can exe-
cute [1]. The problem, in the simplest setting where the robot
does not have kinematic/dynamical (in short, differential)
constraints on its motion and the problem becomes one of
finding an obstacle-free “geometric” path, is reasonably well-
understood and sound algorithms exist for most practical
scenarios. However, robotic systems do have differential
constraints (e.g., momentum), which most often cannot be
neglected. Despite the long history of robotic motion plan-
ning, the inclusion of differential constraints in the planning
process is currently considered an open challenge [2], in
particular with respect to guarantees on the quality of the
obtained solution and class of dynamical systems that can
be addressed. Arguably, the most common approach in this
regard is a decoupling approach, whereby the problem is
decomposed in steps of computing a collision-free path
(neglecting the differential constraints), smoothing the path
to satisfy the motion constraints, and finally reparameterizing
the trajectory so that the robot can execute it [2]. This
approach, while oftentimes fairly computationally efficient,
presents a number of disadvantages, including computation
of trajectories whose cost (e.g., length or control effort) is
far from the theoretical optimum or even failure in finding
any solution trajectory due to the decoupling scheme itself
[2]. For these reasons, it has been advocated that there is

Edward Schmerling is with the Institute for Computational &
Mathematical Engineering, Stanford University, Stanford, CA 94305,
schmrlng@stanford.edu.

Lucas Janson is with the Department of Statistics, Stanford University,
Stanford, CA 94305, ljanson@stanford.edu.

Marco Pavone is with the Department of Aeronautics and Astronautics,
Stanford University, Stanford, CA 94305, pavone@stanford.edu.

This work was supported by an Early Career Faculty grant from NASA’s
Space Technology Research Grants Program (Grant NNX12AQ43G).

a need for planning algorithms that solve the differentially-
constrained motion planning problem (henceforth referred to
as the DMP problem) in one shot, i.e., without decoupling.

Broadly speaking, the DMP problem can be divided into
two categories: (i) DMP for driftless systems, and (ii) DMP
for drift systems. Intuitively, systems with drift constraints
are systems where from some states it is impossible to stop
instantaneously (this is typically due to momentum). More
rigorously, a system ẋ = f(x,u) is a drift system if for some
state x there does not exist any admissible control u such that
f(x,u) = 0 [1]. For example the basic, yet representative,
double integrator system ẍ = u (modeling the motion of a
point mass under controlled acceleration) is a drift system.
From a planning perspective, DMP for drift systems is
notoriously more challenging than its driftless counterpart,
due, for example, to the inherent lack of symmetries in the
dynamics and the presence of regions of inevitable collision
(that is, sets of states from which obstacle collision will
eventually occur, regardless of applied controls) [1].

To date, the state of the art for one-shot solutions to
the DMP problem (both for driftless and drift systems)
is represented by sampling-based techniques, whereby an
explicit construction of the configuration space is avoided
and the configuration space is probabilistically “probed”
with a sampling scheme [1]. Arguably, the most successful
algorithm for DMP to date is the rapidly-exploring random
tree algorithm (RRT) [3], which incrementally builds a tree
of trajectories by randomly sampling points in the configu-
ration space. However, the RRT algorithm lacks optimality
guarantees, in the sense that one can prove that the cost of
the solution returned by RRT converges to a suboptimal cost
as the number of sampled points goes to infinity, almost
surely [4]. An asymptotically-optimal version of RRT for
the geometric (i.e., without differential constraints) case has
been recently presented in [4]. This version, named RRT∗,
essentially adds a rewiring stage to the RRT algorithm to
counteract its greediness in exploring the configuration space.
Prompted by this result, a number of works have proposed
extensions of RRT∗ to the DMP problem [5, 6, 7, 8, 9], with
the goal of retaining the asymptotic optimality property of
RRT∗. Care must be taken in arguing optimality for drift
systems in particular, as the control asymmetry requires
a consideration of both forward-reachable and backward-
reachable trajectory approximations. Even in the driftless
case, the matter of assessing optimality is quite subtle, and
hinges upon a careful characterization of a system’s locally
reachable sets in order to ensure that a planning algorithm
examines “enough volume” in its operation, and thus enough
sample points, to ensure asymptotic optimality [10]. An-
other approach to asymptotically optimal DMP planning is
given by STABLE SPARSE RRT which achieves optimality
through random control propagation instead of connecting



sampled points using a steering subroutine [11]. This paper,
like the RRT∗ variations, is based on a steering function,
although it may be considered less general, as it is our
view that leveraging as much knowledge as possible of the
differential constraints while planning is necessary for the
goal of planning in real-time. In our related work [10] we
provide a theoretical framework to study optimality guar-
antees of sampling-based algorithms for the DMP problem
by focusing on driftless control-affine dynamical systems
of the form ẋ(t) =

∑m
i=1 gi(x(t))ui(t). While this model

is representative for a large class of robotic systems (e.g.,
mobile robots with wheels that roll without slipping and
multi-fingered robotic hands), it is of limited applicability
in problems where momentum (i.e., drift) is a key feature of
the problem setup (e.g., for a spacecraft or a helicopter).

Statement of Contributions: The objective of this paper is
to provide a theoretical framework to study optimality guar-
antees of sampling-based algorithms for the DMP problem
with drift. Specifically, as in [9], we focus on linear affine
systems of the form

ẋ[t] = Ax[t] +Bu[t] + c, x[t] ∈M, u[t] ∈ U ,
where M and U are the configuration and control spaces,
respectively, and it is of interest to find an obstacle-free
trajectory π that minimizes the mixed time/energy criterion

c[π] =

∫ T

0

(
1 + u[t]TRu[t]

)
dt,

where R is a positive definite matrix that weights control
energy expenditure versus traversal time. Henceforth, we will
refer to a DMP problem involving linear affine dynamics
and a mixed time/energy cost criterion as Linear Quadratic
DMP (LQDMP). The LQDMP problem is relevant to appli-
cations for two main reasons: (i) it models the “essential”
features of a number of robotic systems (e.g., spacecraft
in deep space, helicopters, or even ground vehicles), and
(ii) its theoretical study forms the backbone for sampling-
based approaches that rely on linearization of more complex
underlying dynamics. From a theoretical and algorithmic
standpoint, the LQDMP problem presents two challenging
features: (i) dynamics are not symmetric [1], which makes
forward and backward reachable sets different and requires
a more sophisticated analysis of sampling volumes to prove
asymptotic optimality, and (ii) not all directions of motion are
equivalent, in the sense that some motions incur dramatically
higher cost than others due to the algebraic structure of
the constraints. Indeed, these are the very same challenges
that make the DMP problem with drift difficult in the
first place, and they make approximation arguments (e.g.,
those needed to prove asymptotic optimality) more involved.
Fortunately, for LQDMP an explicit characterization for the
optimal trajectory connecting two sampled points in the
absence of obstacles is available, which provides a foothold
to begin the analysis. Specifically, the contribution of this
paper is threefold. First, we show that any trajectory in an
LQDMP problem may be “traced” arbitrarily well, with high
probability, by connecting randomly distributed points from a
sufficiently large sample set covering the configuration space.
We will refer to this property as probabilistic exhaustivity,
as opposed to probabilistic completeness [1], where the
requirement is that at least one trajectory is traced with a suf-

ficiently large sample set. Second, we introduce a sampling-
based algorithm for solving the LQDMP problem, namely
the Differential Fast Marching Tree algorithm (DFMT∗),
whose design is enabled by our analysis of the notion of
probabilistic exhaustivity. In particular, we are able to give a
precise characterization of neighborhood radius, an important
parameter for many asymptotically optimal motion planners,
in contrast with previous work on LQDMP [9]. Third, by
leveraging probabilistic exhaustivity, we show that DFMT∗ is
asymptotically optimal. This analysis framework builds upon
[10], and elements of our approach are inspired by [9]. We
note that in [9], the authors present an excellent extension
of RRT∗ that successfully solves the LQDMP problem in
simulations, even when extended to linearized systems. The
asymptotic optimality claim, however, relies only on a near-
neighbor set size argument: we aim to put the analysis of
the LQDMP problem on more rigorous theoretical footing.

Organization: This paper is structured as follows. In
Section II we formally define the DMP problem we wish
to solve. In Section III we review known results about the
problem of optimally connecting fixed initial and terminal
states under linear affine dynamics with a quadratic cost
function. Furthermore, we provide a simple, yet novel (to
the best of our knowledge) asymptotic characterization of
the spectrum of the weighted controllability Gramian, which
is instrumental to our analysis. In Section IV we prove
the aforementioned probabilistic exhaustivity property for
drift systems with linear affine dynamics. In Section V we
present the DFMT∗ algorithm, and in Section VI we discuss
its asymptotic optimality (together with a convergence rate
characterization). Section VII contains proof-of-concept sim-
ulations. Finally, in Section VIII we discuss several features
of our analysis, we draw some conclusions, and we discuss
directions for future work.

II. PROBLEM FORMULATION

LetM⊆ Rn and U ⊆ Rm be the configuration space and
control space, respectively, of a robotic system. Within this
space let us assume the dynamics of the robot are given by
the linear affine system

ẋ[t] = Ax[t] +Bu[t] + c, x[t] ∈M, u[t] ∈ U , (1)
where A ∈ Rn×n, B ∈ Rn×m, and c ∈ Rn are constants.

A tuple π = (x[],u[], T ) defines a dynamically feasible
trajectory, alternatively path, if the state evolution x :
[0, T ] → M and control input u : [0, T ] → U satisfy
equation (1) for all t ∈ [0, T ]. We define the cost of a
trajectory π by the function

c[π] =

∫ T

0

(
1 + u[t]TRu[t]

)
dt (2)

where R ∈ Rm×m is symmetric positive definite, constant,
and given. We may rewrite this cost function as c[π] =

T + cu[π], where cu[π] =
∫ T

0
u[t]TRu[t] dt, with the

interpretation that this cost function penalizes both trajectory
duration T and control effort cu. The matrix R determines
the relative costs of the control inputs, as well as their costs
relative to the duration of the trajectory. We denote this linear
affine dynamical system with cost by Σ = (A,B, c, R).

Let Mobs ⊂ M be the obstacle region within the con-
figuration space and consider the closed obstacle-free space



Mfree = cl[M \Mobs]. The starting configuration xinit is
an element of Mfree, and the goal region Mgoal is an open
subset of Mfree. The trajectory planning problem is denoted
by the tuple (Σ,Mfree,xinit,Mgoal). A dynamically feasible
trajectory π = (x,u, T ) is collision-free if x[t] ∈ Mfree
for all t ∈ [0, T ]. A trajectory π is said to be feasible
for the trajectory planning problem (Σ,Mfree,xinit,Mgoal)
if it is dynamically feasible, collision-free, x[0] = xinit, and
x[T ] ∈Mgoal.

Let Π be the set of all feasible paths. The objective is
to find the feasible path with minimum associated cost.
The optimal trajectory planning problem is then defined as
follows:

LQDMP problem: Given a trajectory planning
problem (Σ,Mfree,xinit,Mgoal) with cost function
c : Π → R≥0 given by equation (2), find a
feasible path π∗ such that c[π∗] = min{c[π] |
π is feasible}. If no such path exists, report failure.

Our analysis will rely on two key sets of assumptions,
relating, respectively, to the system Σ and the problem-
specific parameters Mfree,xinit,Mgoal.

Assumptions on system: We assume that the system Σ
is controllable, (i.e., the pair (A,B) is controllable) [12]
so that even disregarding obstacles there exist dynamically
feasible trajectories between states.1 Also, we assume that
the control space is unconstrained, i.e. U = Rm, and that the
cost weight matrix R is symmetric positive definite, so that
every control direction has positive cost. These assumptions
will be collectively referred to as AΣ.

Assumptions on problem parameters: We require that the
configuration space is a compact subset of Rn so that we may
sample from it. Furthermore, we require that the goal region
Mgoal has regular boundary, that is there exists ξ > 0 such
that ∀y ∈ ∂Mgoal, there exists z ∈ Mgoal with B[z, ξ] ⊆
Mgoal and y ∈ ∂B[z, ξ], where B denotes the Euclidean
2-norm ball. This requirement that the boundary of the goal
region has bounded curvature ensures that a point sampling
procedure may expect to select points in the goal region near
any point on the region’s boundary. We make requirements
on the clearance of the optimal trajectory, i.e., its “distance”
from Mobs [10]. For a given δ > 0, the δ-interior of Mfree
is defined as the set of all states that are at least a Euclidean
distance δ away from any point in Mobs. A collision-free
path π is said to have strong δ-clearance if its state trajectory
x lies entirely inside the δ-interior ofMfree. A collision-free
path π is said to have weak δ-clearance if there exists a path
π′ that has strong δ-clearance and there exists a homotopy ψ,
with ψ[0] = π and ψ[1] = π′ that satisfies the following three
properties: (a) ψ[α] is a dynamically feasible, piecewise-
optimal trajectory for all α ∈ (0, 1], (b) limα→0 c[ψ[α]] =
c[π], and (c) for all α ∈ (0, 1] there exists δα > 0 such
that ψ[α] has strong δα-clearance. Properties (a) and (b) are
required since pathological obstacle sets may be constructed
that squeeze all optimum-approximating homotopies into
undesirable motion. In practice, however, as long as Mfree
does not contain any passages of infinitesimal width, the
fact that Σ is controllable will allow every trajectory to

1This system controllability assumption is why we do not fold the
constant drift term c into the state x.

be weak δ-clear. We claim that the assumptions about the
problem parameters are very mild (they can be regarded as
“minimum” regularity assumptions).

All trajectories discussed in this paper are dynamically
feasible unless otherwise noted. The symbol ‖ · ‖ denotes
the 2-norm, induced or otherwise. The asymptotic notations
O,Ω,Θ, o mean bounded above, bounded below, bounded
both above and below, and asymptotically dominated, re-
spectively.

III. OPTIMAL CONTROL IN THE ABSENCE OF OBSTACLES

The goal of this section is twofold: to review results about
two-point boundary value problems for linear affine systems,
and to present a simple, yet novel asymptotic characterization
of the spectrum of the controllability Gramian. Both results
will be instrumental to our analysis of LQDMP.
A. Two Point Boundary Value Problem

The material in this section is standard, we provide it
to make the paper self-contained. Our presentation follows
the treatment in [13, 9]. Specifically, this section is con-
cerned with local steering between states in the absence of
environment boundaries and obstacles. Given a start state
x0 ∈ M and an end state x1 ∈ M, the two point boundary
value problem (2BVP) is to find a trajectory π = (x,u, τ∗)
between x[0] = x0 and x[τ∗] = x1 that satisfies the system
Σ and minimizes its cost function (2). Denote this trajectory
and its cost as π∗[x0,x1] and c∗[x0,x1] respectively:
π∗[x0,x1] = argmin{π | x[0] = x0 ∧ x[τ∗] = x1} c[π]

c∗[x0,x1] = min{π | x[0] = x0 ∧ x[τ∗] = x1} c[π].

Let us define the weighted controllability Gramian G[t] as
the solution of the Lyapunov equation

Ġ[t] = AG[t] +G[t]AT +BR−1BT , G[0] = 0,

which has the closed form expression

G[t] =

∫ t

0

exp[As]BR−1BT exp[AT s] ds. (3)

Under the assumptions AΣ (in particular, system (1) is
controllable), we have that G[t] is symmetric positive definite
for all t > 0. This fact allows us to define the weighted norm
‖ · ‖G−1 for x ∈ Rn:

‖x‖G[t]−1 =
√
xTG[t]−1x.

Let x̄[t] be the zero input response of system (1), that is
the solution of the differential equation

˙̄x[t] = Ax̄[t] + c, x̄[0] = x0,

which has the closed form expression

x̄[t] = exp[At]x0 +

∫ t

0

exp[As]cds. (4)

Then for a fixed arrival time τ the optimal control policy for
the fixed-time 2BVP is given by [13]:

u[t] = R−1BT exp[AT (τ − t)]G[τ ]−1(x1 − x̄[τ ]), (5)
which corresponds to the minimal cost (as a function of travel
time τ )

c[τ ] = τ + ‖x1 − x̄[τ ]‖2G[τ ]−1 . (6)

The optimal connection time τ∗ may be computed by mini-
mizing (6) over τ . The state trajectory x[t] that evolves from
this control policy may be computed explicitly as:
x[t] = x̄[t]+G[t] exp[AT (τ∗−t)]G[τ∗]−1(x1−x̄[τ∗]). (7)



Let π∗[x0,x1, ...,xK ] denote the concatenation of the
trajectories π∗[xk,xk+1] between successive states
x0,x1, ...,xK ∈M.

B. Small-Time Characterization of the Spectrum of the Con-
trollability Gramian

We begin by briefly reviewing the concept of
controllability indices2 for a controllable system
(A,B). Let bk denote the kth column of B. Consider
searching the columns of the controllability matrix
C[A,B] =

[
B AB · · · An−1B

]
from left to right

for a set of n linearly independent vectors. This
process is well-defined for a controllable pair (A,B)
since rank [C[A,B]] = n. The resulting set S ={
b1, Ab1, . . . , A

ν1−1b1,b2, . . . , A
ν2−1b2, . . . , A

νm−1bm
}

defines the controllability indices {ν1, . . . , νm} where∑m
k=1 νk = n and ν = maxk νk is called the controllability

index of (A,B). The νk give a fundamental notion of
how difficult a system is to control in various directions;
indeed these indices are a property of the system invariant
with respect to similarity transformation, e.g. permuting
the columns of B. We may also label the vectors of S as
v1, . . . ,vn in the order that they come up in C[A,B]. That
is, vi = Aeibki and ei ≤ ej iff i ≤ j (note: en = ν − 1).
Let v̂1, . . . , v̂n be an orthogonalization of the vi’s so that
V = V̂ X where V and V̂ have the vi’s and v̂i’s as columns
respectively, and X is upper triangular.

Lemma III.1 (Small-Time Gramian Asymptotics). Let the
eigenvalues of G[t] be λ1[t] ≥ λ2[t] ≥ · · · ≥ λn[t]. Then
λi[t] = Θ[t2ei+1] as t→ 0 for i = 1, . . . , n.

Proof. We apply the Courant-Fischer Theorem:
λi = min

V
{max{RG[t][z] | z ∈ V∗} | dim[V] = n− i+ 1}

(8)
where RG[t][z] = zTG[t]z/‖z‖, V denotes a linear subspace
of Rn, and V∗ = V \ {0}. Note that

v̂Ti exp[At]B =

ei−1∑
j=0

tj

j!
v̂Ti A

jB +

∞∑
j=ei

tj

j!
v̂Ti A

jB

=

∞∑
j=ei

tj

j!
v̂Ti A

jB = Θ[tei ] as t→ 0,

because v̂Ti A
jbk = 0 for all j < ei, k = 1, . . . ,m by

construction. Then

RG[t][v̂i] =

∫ t

0

v̂Ti exp[As]BR−1BT exp[AT s]v̂i ds

=

∫ t

0

Θ[s2ei ] ds = Θ[t2ei+1] as t→ 0.

Making the identification V = span{v̂i, . . . , v̂n} in Equa-
tion (8) implies that λi = O[t2ei+1]; to see that λi =
Ω[t2ei+1] we note that any subspace V of dimension n−i+1
cannot satisfy v̂1, . . . , v̂i ∈ V⊥, as dim[V⊥] = i− 1.

Lemma III.1 has three immediate corollaries. The first
upper bounds ‖G[t]−1‖ which bounds the local cost of
motion in any direction. The second relates ‖ · ‖G[t]−1 to the
Euclidean norm ‖ · ‖ through a norm-equivalence inequality.
The third is a lower bound for the determinant of G[t], a

2See [14, p. 431] or [12, p. 150] for a more detailed treatment.

result that will prove useful for estimating the volumes of
reachable sets.

Lemma III.2 (Small-time minimum eigenvalue of control-
lability Gramian). Suppose that the pair (A,B) has control-
lability index ν, then λn[G[t]] = Θ[t2ν−1] as t → 0, or,
equivalently, ‖G[t]−1‖ = Θ[t−2ν+1].

Lemma III.3 (Norm Equivalence). Suppose that the pair
(A,B) has controllability index ν, and consider the Cholesky
factorization G[t] = L[t]L[t]T . Then for x ∈ Rn,
‖x‖G[t]−1 = ‖L[t]−1x‖ and

‖x‖
‖L[t]‖

≤ ‖x‖G[t]−1 ≤ ‖L[t]−1‖‖x‖

where ‖L[t]‖ = Θ[t−1/2] and ‖L[t]−1‖ = Θ[t−ν+1/2].

Lemma III.4 (Small-time determinant of controllability
Gramian). Suppose that the pair (A,B) has controllability
indices {ν1, . . . , νm}, then det[G[t]] = Θ[tD] as t → 0
where D =

∑m
k=1 ν

2
k .

IV. PROBABILISTIC EXHAUSTIVITY

In this section we prove a key result characterizing random
sampling schemes for the LQDMP problem: any feasible
trajectory through the configuration space M is “traced”
arbitrarily well by connecting randomly distributed points
from a sufficiently large sample set covering the configu-
ration space. We will refer to this property as probabilistic
exhaustivity. The same notion of probabilistic exhaustivity
(clearly much stronger than the usual notion of probabilistic
completeness) was introduced in the related paper [10] in
the context of DMP for driftless systems. The result proven
in that work does not carry over to the drift case as it relies
on the metric inequality to bound the cost of approximate
paths; the drift case lacks the control symmetry to make such
estimates. Thus in order to prove probabilistic exhaustivity
in the case of linear affine systems, we first provide a result,
preceded by a component lemma, analogous to the metric
inequality characterizing the effect that perturbations of the
endpoints of a path have on its cost and state trajectory.
The idea, then, is that tracing waypoints may be selected
as small perturbations of points along the trajectory to be
approximated, provided the sample density is high enough.

Lemma IV.1 (Optimal Cost/Time Breakdown). Let x0,x1 ∈
M, x0 6= x1, π = π∗[x0,x1] = (x,u, τ∗), and denote
c = c[π]. For c sufficiently small, τ∗ ≥ c

3 .

Proof. For fixed x0 6= x1, consider the series expansion of
the control effort term ‖x1 − x̄[τ ]‖2G[τ ]−1 about τ = 0. We
claim that ‖x1 − x̄[τ ]‖2G[τ ]−1 = aτ−e +O[τ−e+1] for some
1 ≤ e ≤ 2ν − 1. The fact that e ≥ 1 follows from the fact
that x1 − x̄[τ ] = (x1 − x0) + O[τ ] has a nonzero zeroth
order term and λmin[G[τ ]−1] = Θ[τ−1] as a consequence
of Lemma III.1. We note that for general x0,x1, however,
it is almost certain that (x1 − x0) or one of the low-order
(in τ ) terms of x1 − x̄[τ ] will have a component along the
maximal eigenvector of G[τ ]−1, which may result in a series
expansion term with e up to 2ν − 1. Then

c[τ ] = τ + aτ−e +O[τ−e+1]



is maximized at τ∗ = (ae)1/(1+e) + o(1) and we compute
the ratio

τ∗/c =

(
1

1 + 1/e

)
(1 + o(1))

as c→ 0 (which implies also τ∗ → 0).3 The dominant term
in the asymptotics is smallest when e = 1 (corresponding to
τ∗/c ≈ 1/2), and in particular we note that τ∗/c ≥ 1/3 for
x0,x1 with c sufficiently small.

Lemma IV.2 (Fixed-Time Local Trajectory Approxima-
tion). Let x0,x1 ∈ M, x0 6= x1, π = π∗[x0,x1] =
(x,u, τ∗), and denote c = c[π]. Consider bounded start
and end state perturbations δx0, δx1 ∈ Rn such that
max{‖δx0‖G[τ∗]−1 , ‖δx1‖G[τ∗]−1} ≤ η

√
c. Let σ =

π∗[x0+δx0,x1+δx1] = (y,v, τ̃∗) be the optimal trajectory
between the perturbed endpoints. Then for small c, we have
the cost bound

c[σ] ≤ c[π] (1 + 4η +O[η + c]) .

Additionally we may bound the geometric extent of σ:
‖y[t]− x0‖ = O[‖x0‖c+ (η + c

3
2 )c−ν+1]

for t ∈ [0, τ̃∗].

Proof. Since σ is the optimum, regardless of the value of τ̃∗
we have the upper bound
c[σ] ≤ τ∗ + ‖x1 − x̄[τ∗] + δx1 − exp[Aτ∗]δx0‖2G[τ∗]−1

which expands as
c[σ]− c ≤ 2(x1 − x̄[τ∗])TG[τ∗]−1(δx1 − exp[Aτ∗]δx0)

+ ‖δx1 − exp[Aτ∗]δx0‖2G[τ∗]−1

≤ 2 ‖x1 − x̄[τ∗]‖G[τ∗]−1 ‖δx1 − exp[Aτ∗]δx0‖G[τ∗]−1

+O[η2c]

≤ 2
√
c− τ∗

(
η
√
c+ η

√
c(1 +O[τ∗])

)
+O[η2c]

≤ 4ηc(1 +O[η + c]).

where in the second line we have applied the (weighted)
Cauchy-Schwarz inequality, and, in the last line, the fact that
τ∗ ≤ c.

To bound ‖y[t]− x0‖ we apply the explicit form for the
optimal trajectory given in Equation (7):
‖y[t]− x0‖

=

∥∥∥∥x0(eAt − 1) + eAtδx0 +

∫ t

0

eAscds

+G[t]eA
T (τ̃∗−t)G[τ̃∗]−1(x1 − x̄[τ̃∗] + δx1 − eAtδx0)

∥∥∥
= O[‖x0‖τ̃∗] + η

√
cO[τ̃∗

−ν+1/2

] +O[τ̃∗]

+O[τ̃∗]O[τ̃∗
−ν+1/2

]c[σ]

= O[‖x0‖c] + 3ν−
1
2O[ηc−ν+1] + 3ν−

3
2O[c−ν+ 5

2 ]

= O[‖x0‖c] +O[(η + c
3
2 )c−ν+1]

where we have made liberal use of norm equivalence bounds
(Lemma III.3) and the fact that c[σ]/3 ≤ τ̃∗ ≤ c[σ]
(Lemma IV.1), all assuming c sufficiently small.

Motivated by Lemma IV.2, we define the perturbation ball:

∆[x, τ, r] =
{
z | ‖x− z‖G[τ ]−1 ≤ r

}
.

3We note that this bound does not depend on the actual values of x0 and
x1 (in particular the constant a), but only their optimal connection cost.

This set represents perturbations of x with limited effects
on both incoming and outgoing trajectories (depending on
whether a point is viewed as an end state or start state
perturbation respectively). We note that since ‖ · ‖G[t]−1 is
decreasing as t increases, we have

∆[x, τ1, r] ⊂ ∆[x, τ2, r] for τ1 ≤ τ2. (9)
In order to expect the sample points of a motion planning
algorithm to lie within ∆[x, τ, r], we must lower bound its
volume.

Remark IV.3 (Bounding Perturbation Ball Volume). The
inequality ‖x− z‖G[τ ]−1 ≤ r defines an ellipse with volume

µ[∆[x, τ, r]] = rnζn
√

det[G[τ ]]

where ζn denotes the volume of the unit ball in Rn. Given
our asymptotic characterization of det[G[τ ]] in Lemma III.4,
we note that there is a threshold τµ and constant Cµ such
that

µ[∆[x, τ, r]] ≥ CµrnτD/2

for all τ < τµ.

Lemma IV.2 is a statement about local trajectory approxi-
mation. We now give a definition of what it means for a series
of states to closely approximate a given global trajectory. Let
π = (x,u, Tπ) be a dynamically feasible trajectory. Given a
set of waypoints {yk}Kk=0 ⊂M, we associate the trajectory
σ = π∗[y0, . . . ,yK ] = (y,v, Tσ). We consider the {yk} to
(ε, r, p)-trace the trajectory π if: (a) the cost of σ is bounded
as c[σ] ≤ (1 + ε)c[π], (b) c∗[yk,yk+1] ≤ r for all k, and (c)
the maximum distance from any point of y to x is no more
than p, i.e.

max
t∈[0,Tσ]

(
min

s∈[0,Tπ ]
‖y[t]− x[s]‖

)
≤ p.

The combination of these three properties is what makes
σ, if approximating a near-globally-optimal trajectory π,
amenable to recovery by the path planning algorithms we
propose in the next section. In particular, (b) ensures that
σ is the concatenation of uniformly local connections. In
Theorem IV.6 we show that suitable waypoints may be
found with high probability as a subset of a set of randomly
sampled nodes, the proof of which requires the following
two technical lemmas lower bounding the probability that a
sample set will provide adequate coverage around a trajectory
of interest. Let SampleFree[N ] denote a set of N points
sampled independently and identically from the uniform
distribution on Mfree.

Lemma IV.4 (Lemma IV.3, [10]). Fix N ∈ N, α ∈ (0, 1),
and let S0, . . . , SK be disjoint subsets of Mfree with

µ[Sk] = µ[S1] ≥ (2 + log(1/α))e2

(
1

N

)
µ[Mfree],

for each k. Let V = SampleFree[N ]; then the probability
that more than an α fraction of the sets Sk contain no point
of V is bounded as:
P [#{k ∈ {0, . . . ,K} : Sk ∩ V = ∅} ≥ αK] ≤ 2e−αK .

Lemma IV.5 (Lemma IV.4, [10]). Fix N ∈ N and let
T0, . . . , TK be subsets of Mfree, possibly overlapping, with

µ[Tk] = µ[T1] ≥ κ
(

logN

N

)
µ[Mfree]



for each k and some constant κ > 0. Let V =
SampleFree[N ]; then the probability that there exists a
Tk that does not contain a point of V is bounded as:

P
[∨K

k=0{Tk ∩ V = ∅}
]
≤ KN−κ.

The proofs of these two lemmas may be found in our
related work [10]. We are now in a position to prove the
main result of this section.

Theorem IV.6 (Probabilistic exhaustivity). Let Σ be a system
satisfying the assumptions AΣ and suppose π = (x,u, T ) is
a dynamically feasible trajectory with strong δ-clearance,
δ > 0. Let N ∈ N, ε > 0, and consider a set of sample
nodes V = {x[0]} ∪ SampleFree[N ]. Define D̃ = (n +

D)/2, CΣ,Mfree =
(

23n+D/23D/2µ[Mfree]/(CµD̃)
)1/D̃

and
consider the event EN that there exist waypoints {yk}Kk=0 ⊂
V which (ε, rN , pN )-trace π, where

rN =(1 + η)1/D̃CΣ,Mfree

(
logN

N

)1/D̃

,

for a parameter η ≥ 0, and pN = Cpr
−ν+1
N for some

constant Cp depending only on the system Σ. Then, as
N → ∞, the probability that no such waypoint set exists
is asymptotically bounded as

1− P [EN ] = O
(
N−η/D̃ log−1/D̃N

)
.

Proof. Note that in the case c[π] = 0 we may pick y0 = x[0]
to be the only waypoint and the result is trivial. Therefore
assume c[π] > 0. Make the identification α = ε/4, β = ε/2
and fix N sufficiently large so that rN/6 ≤ τµ and also:

logN ≥ 4nβ−nD̃(2− log(α))e2/(1 + η). (10)
Take x[tk] to be points spaced along π at cost intervals rN/2;
more precisely let t0 = 0, and for k = 1, 2, . . . consider

tk=min {t ∈ (tk, T ) | c∗[x[tk−1],x[t]] ≥ rN/2} .
Let K be the first k for which the set is empty; take tK = T .
Note that by construction, we have K ≤ d2c[π]/rNe.

We consider the sets Tk = ∆[x[tk], rN/6, (1/4)
√
rN/2]

and Sk = ∆[x[tk], rN/6, (β/4)
√
rN/2]. In particular the

time rN/6 here is chosen so that the optimal connec-
tion times bewteen the xk satisfy τ∗[x[tk−1],x[tk]] ≥
c∗[x[tk−1],x[tk]]/3 = rN/6. Applying the ball contain-
ment property (9) this means that for any such τ∗,
∆[x[tk], rN/6, ρ] ⊂ ∆[x[tk], τ∗, ρ] for ρ =

√
rN/2 or

(β/4)
√
rN/2. From Remark IV.3 and our choice of rN we

have the volume bound

µ(Tk) ≥ µ[Mfree]

(
1 + η

D̃

)(
logN

N

)
, (11)

and similarly

µ(Sk) ≥ (β/4)nµ[Mfree]

(
1 + η

D̃

)(
logN

N

)
, (12)

for each k. Combining equation (11) and Lemma IV.5, we
have that the probability that there exists a Tk that does not
contain a sample point (i.e. Tk ∩ V = ∅) is bounded as:

P
[∨K

m=0{Tk ∩ V = ∅}
]
≤ KN−(1+η)/D̃.

We note that the Sk are disjoint (as long as ε < 1)
since ‖x[tk−1]− x[tk]]‖G[rN/6]−1 ≤

√
rN/2. Then we may

combine equations (10) and (12), which together imply that

the Sk satisfy the condition of Lemma IV.4, to see that the
probability that more than an α fraction of the Sk do not
contain a sample point is bounded as:
P [#{k ∈ {0, . . . ,K} : Sk ∩ V = ∅} ≥ αK] ≤ 2e−αK .

Now, as long as neither of these possibilities holds (i.e. if
every Tk and at least a (1 − α) fraction of the Sk contains
a point of V ), we will show that the existence of suitable
waypoints {yk}Kk=0 ⊂ V is guaranteed. In that case then we
may union bound the probability of failure:

1− P [EN ] ≤ KN−(1+η)/D̃ + 2e−αK

= O
[
N−η/D̃ log−1/D̃N

]
,

as N → ∞ (the first term dominates asymptotically),
where we have used the fact that K ≤ d2c[π]/rNe =

O[(N/ logN)1/D̃].
Suppose that every Tk and at least a (1 − α) fraction of

the Sk contains a point of V . Choose points {yk} ⊂ V
accordingly: within Sk if possible, and within Tk otherwise.
We may apply Lemma IV.2 to verify that these points
(ε, rN , pN )-trace x. For yk ∈ Sk,yk+1 ∈ Sk+1 we have
to first order:

c∗[yk−1,yk] ≤ (1 + β)c∗[x[tk−1],x[tk]]

= (1 + ε/2)(rN/2).

Since all but an ε/2 fraction of successive points yk−1,yk
must both be in S sets and obey the above cost bound,
and the remaining pairs satisfy the analogous bound for
T sets (with 2 instead of (1 + ε/2)), the total cost of
π∗[y0, . . . ,yK ] = (y,v, Tσ) is bounded above by (1 +
ε)c[π]. We also have c∗[yk−1,yk] ≤ rN for all k. The
maximum Euclidean distance from any point of y (say, on
the segment π∗[yk,yk+1]) to x is bounded above its distance
to x[tk], which by Lemma IV.2 is O[‖x[tk]‖rN + r−ν+1

N ] =
O[r−ν+1

N ] as N → ∞ since ‖x[t]‖ achieves some fixed
maximum over [0, T ].

V. DFMT∗ ALGORITHM

The algorithm presented here is based on FMT∗, from
the recent work of [15], which can be thought of as an
accelerated version of PRM∗ [4]. Briefly, PRM∗ first samples
all the vertices, then constructs a fully locally connected
graph, and then performs shortest path search (e.g., Djikstra’s
algorithm) on the graph to obtain a solution. FMT∗ also
samples all vertices first, but instead of a graph, lazily
builds a tree via dynamic programming that very closely
approximates the shortest-path tree for PRM∗, but saves a
multiplicative factor of O[log(n)] collision-checks by not
constructing the full graph. The algorithm given by Algo-
rithm 1, DFMT∗, is not fundamentally different from the
original FMT∗ algorithm, but mainly changes what “local”
means under differential constraints (similar to [10], but now
with drift). One more difference of DFMT∗ presented here,
even from the algorithm in [10], is that the edges are now
directed, reflecting the fundamental asymmetry of differential
constraints with drift.

Specifically, define the fixed-time forward-reachable and
backwards-reachable sets respectively:

R+[x, r] = {x′ ∈M | c∗[x,x′] < r}
R−[x, r] = {x′ ∈M | c∗[x′,x] < r}.



Membership in either reachable set may be checked by
minimizing the explicit cost function (6) over travel time; we
note that the proof of Lemma IV.1 provides a good initial
guess for a Newton method. The set of samples to check
for membership may be pruned by considering the form
of G[t], as suggested in [9]. Let CollisionFree[x1,x2]
denote the boolean function which returns true if and only
if π∗[x1,x2] lies within Mfree. Given a set of vertices
V , a state x ∈ M, and a cost threshold r > 0, let
Near±[V,x, r] = V ∩ R±[x, r]. Let (x1,x2) denote the
directed edge corresponding to π∗[x1,x2] with edge weight
c∗[x1,x2]. Given a directed graph G = (V,E), where V is
the vertex set and E is the edge set, and a vertex x ∈ V ,
let Cost[x, G] be the function that returns the cost of the
shortest (directed) path in the graph G between the vertices
xinit and x. Let Path[x, G] be the function that returns the
path achieving that cost. The DFMT∗ algorithm is given in
Algorithm 1. The algorithm uses two mutually exclusive sets,
namely H and W . The unexplored set W stores all samples
in the sample set V that have not yet been considered for
addition to the tree of paths. The wavefront set H , on the
other hand, tracks in sorted order (by cost from the root)
only those nodes which have already been added to the
tree that are near enough to tree leaves to actually form
better connections. A detailed description of the algorithm
would parallel the one provided in [15] and is omitted due
to space limitations, we refer the interested reader to [15]. An
extension of PRM∗, which we denote by DPRM∗, may also
be defined in a straightforward manner as in [10], although
we omit the full description here. Briefly, DPRM∗ searches
the graph of all local collision-free connections that appear
in any Near set (as opposed to the tree subgraph constructed
by DFMT∗) for the least cost trajectory.

Algorithm 1 Differential Fast Marching Tree (DFMT∗)
1 V ← {xinit} ∪ SampleFree[N ]; E ← ∅
2 W ← V \ {xinit}; H ← {xinit}
3 z← xinit
4 while z /∈Mgoal do
5 Hnew ← ∅
6 Xnear = Near+[V \ {z}, z, rN ] ∩W
7 for x ∈ Xnear do
8 Ynear ← Near−[V \ {x},x, rN ] ∩H
9 ymin ← arg miny∈Ynear{Cost[y, T = (V,E)] +

c∗[y,x]}
10 if CollisionFree[ymin,x] then
11 E ← E ∪ {(ymin,x)}
12 Hnew ← Hnew ∪ {x}
13 W ←W \ {x}
14 end if
15 end for
16 H ← (H ∪Hnew) \ {z}
17 if H = ∅ then
18 return Algorithm Failure
19 end if
20 z← arg miny∈H Cost[y, T = (V,E)]
21 end while
22 return Path[z, T = (V,E)]

VI. ASYMPTOTIC OPTIMALITY OF DFMT∗

In this section, we state the asymptotic optimality of
DFMT∗, for which the asymptotic optimality of DPRM∗
is a corollary. We note that in contrast to the work re-
quired to establish probabilistic exhaustivity for this class
of differentially constrained systems and cost functions, the
argument that DFMT∗ recovers paths at least as good as
any waypoint-traced trajectory is essentially equivalent to
the proofs presented in [10] and [15]. That is, the idea that
DFMT∗ (or DPRM∗) can connect closely spaced sample
points at a resolution sufficiently fine that every connection
takes place away from the influence of the obstacle set is not
a feature specific to the LQDMP problem. Thus we state the
following theorem and, in the interest of brevity, refer the
reader to the proofs of Theorems VI.1 and VI.2 presented
in [10]. We emphasize that the following optimality result
for DFMT∗ also provides a convergence rate bound, but to
avoid confusion we note that this bound is given in terms of
sample size N . For a discussion of how sample size relates
to run time for FMT∗-style algorithms see [15].

Theorem VI.1 (DFMT∗ asymptotic optimality). Let
(Σ,Mfree,xinit,Mgoal) be a trajectory planning problem
satisfying the assumptions AΣ and with Mgoal ξ-regular,
such that there exists an optimal path π∗ with weak δ-
clearance for some δ > 0. Let cN denote the cost of the path
returned by DFMT∗ with N vertices using the cost threshold:

rN =(1 + η)1/D̃CΣ,Mfree

(
logN

N

)1/D̃

,

where η ≥ 0 is an implementation-specific
parameter, D̃ = (n + D)/2, and CΣ,Mfree =

(23n+D/23D/2µ[Mfree]/(CµD̃))1/D̃. Then for fixed ε > 0,

P [cN > (1 + ε)c(π)] = O
(
N−η/D̃ log−1/D̃N

)
.

VII. NUMERICAL EXPERIMENTS

The DFMT∗ and DPRM∗ algorithms were implemented
in Julia and run using a Unix operating system with a
2.0 GHz processor and 8 GB of RAM. We tested DFMT∗
and DPRM∗ on the double integrator system, a standard
LQDMP formulation as studied in [9]. We also implemented
variants of DFMT∗ and DPRM∗ where the local connection
cost is computed with respect to a fixed time τ , instead
of optimizing c∗[τ ] over all arrival times. This is less
computationally intensive than searching for the optimal τ∗,
and can be proven asymptotically optimal as well using a
similar probabilistic exhaustivity approach. The intuition is
that for a fixed cost radius, the algorithm is searching over
a “donut” – the band of states in which the fixed τ is a
valid approximation for τ∗ – instead of a “ball.” Provided
the sample count N is sufficiently large, this donut has
enough volume to support the desired tracing connections.
We denote the optimal-connection algorithms presented in
this paper τ∗ DFMT∗ and τ∗ DPRM∗ to differentiate the
two approaches. The simulation results are summarized in
Figure 1. A maze was used for Mobs, and our algorithm
implementations were run 50 times each on sample sizes up
to N = 12000 for fixed τ and N = 6000 for the τ∗ variants.
We plot results for both versions of DFMT∗ run with and
without a cache of near neighbor sets and local connection
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Fig. 1. Top: Simulation results for the double integrator system with a
maze obstacle set. The error bars in each axis represent plus and minus
one standard error of the mean for a fixed sample size n. Bottom: Example
DFMT∗ tree for n = 6000. The position of the the feasible trajectory
returned is highlighted in blue with velocity denoted by arrows.

costs; as discussed in [10] this information, which does
not depend on the problem-specific obstacle configuration,
may be precomputed for batch-processing algorithms such
as DFMT∗ and DPRM∗– the price to pay is a moderate
increase in memory requirements. We see that the extra time
for optimizing over local connection duration τ is significant
(DFMT∗ – no cache vs. τ∗ DFMT∗ – no cache), but may
be mitigated by precomputation (DFMT∗ vs. τ∗ DFMT∗).

VIII. DISCUSSION AND CONCLUSIONS

In this paper we have provided a thorough and rigorous
theoretical framework to assess optimality guarantees of
sampling-based algorithms for linear affine systems with a
mixed time/energy cost function. In particular, we leveraged
the study of small-cost perturbations to show that optimum-
approximating waypoints may be found among randomly
sampled state sets with high probability. We applied this
analysis to design and theoretically validate an asymptoti-
cally optimal algorithm, DFMT∗, for the LQDMP problem.

Although this work is nominally limited to linear affine
drift systems, it not only provides a good model for many real
systems, but is a crucial first step towards modelling nonlin-

ear systems as well. Indeed, since DFMT∗ can be applied to
a nonlinear system by linearizing the dynamics, an important
next step will be to assess the theoretical guarantees of
DFMT∗ applied to such a linearized approximation. Given
suitable smoothness assumptions on the system linearization
(sufficiently powerful, but still encompassing a useful class
of dynamics), it seems likely that the perturbation analysis
and probabilistic exhaustivity may follow identically to that
presented in this paper, up to an additional term quantifying
the “perturbation on the perturbation.” A similar linearization
approach has been experimentally validated by Kinodynamic
RRT∗ in [9]. We are also note the similarities in analysis
evident between the linear affine drift systems studied in this
paper and the (possibly non-linear) control-affine driftless
systems studied in [10]. In particular, the parallel notions of
controllable/bracket-generating systems and controllability
index/Hausdorff dimension give hope that a unifying theory
for non-linear systems with drift may be achieved. There are
a number of additional directions open for further research.
In particular, we plan to deploy DFMT∗ on robotic platforms,
specifically helicopters and floating platforms emulating the
dynamics of spacecraft. Also, it is of interest to study a
bidirectional version of DFMT∗. Finally, it is of interest
to devise strategies whereby the radius tuning parameter is
self regulating, with the objective of making the algorithm
parameter-free.
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